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Abstract. We outline an approach to hierarchical modelling of com-
plex patterns that is based on operations of sums with constraints on
information systems. We show that such operations can be treated as a
universal tool in hierarchical modelling of complex patterns.

1 Introduction

One of the main tasks in granular computing is to develop calculi of information
granules [16], [10], [11]. Information systems used in rough set theory are particu-
lar kinds of information granules. In the paper we introduce and study operations
on such information granules basic for reasoning in distributed systems of infor-
mation granules. The operations are called constrained sums. They are developed
by interpreting infomorphisms between classifications [2]. In [12] we have shown
that classifications [2] and information systems [5] are, in a sense, equivalent. We
also extend the results included in [12] on applications of approximation spaces
to study properties of infomorphisms. Operations, called constrained sums seem
to be very important in searching for patterns in data mining (e.g., in spatio-
temporal reasoning) or in a more general sense in generating relevant granules
for approximate reasoning using calculi on information granules [12].

This paper is organized as follows. In Section 2 we present basic concepts. In
Section 3 we discuss constrained sums of information systems and hierarchical
information systems. Applications of constrained sums of information systems
in modelling patterns for concept approximation are outlined in Section 4 and
Section 5.

2 Approximation Spaces and Infomorphisms

In this section we recall basic notions for our considerations.



2.1 Approximation Spaces

We recall a general definition of an approximation space. Several known ap-
proaches to concept approximations can be covered using such spaces, e.g., the
tolerance based rough set model.

For every non-empty set U, let P (U) denote the set of all subsets of U.

Definition 1. [9], [14] A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where

– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function,
– ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ are denoting vectors of parameters.

The uncertainty function defines for every object x a set of similarly described
objects.

A set X ⊆ U is definable in AS#,$ if and only if it is a union of some values
of the uncertainty function.

The rough inclusion function defines the degree of inclusion between two
subsets of U (see, e.g., [9], [14]):

νSRI (X, Y ) =

{

card(X∩Y )
card(X) if X 6= ∅

1 if X = ∅.

This measure is widely used by data mining and rough set communities. However,
Jan  Lukasiewicz [4] was first who used this idea to estimate the probability of
implications.

For example, any information system IS = (U, A) defines an approximation
space ASA = (U, IA, νSRI) where IA(x) is the A-indiscernibility class [5] defined
by x.

The lower and the upper approximations of subsets of U are defined as fol-
lows.

Definition 2. For an approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U the lower and the upper approximations are defined by

LOW
(

AS#,$, X
)

= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(

AS#,$, X
)

= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

2.2 Infomorphisms

In this section we recall the definition of infomorphism for two information sys-
tems [12]. We also present some new properties of infomorphisms. The infomor-
phisms for classifications are introduced and studied in [2].

We denote by Σ(IS) the set of Boolean combinations of descriptors over IS
and by ‖α‖IS ⊆ U is denoted the semantics of α in IS. More precisely, the set
Σ(IS) is defined recursively by



1. (a in V ) ∈ Σ(IS), for any a ∈ A and V ⊆ Va.
2. If α ∈ Σ(IS) then ¬α ∈ Σ(IS).
3. If α, β ∈ Σ(IS) then α ∧ β ∈ Σ(IS).
4. If α, β ∈ Σ(IS) then α ∨ β ∈ Σ(IS).

The semantics of formulas from Σ(IS) with respect to an information system
IS is defined recursively by

1. ‖a in V ‖IS = {x ∈ U : a (x) ∈ V } .
2. ‖¬α‖IS = U − ‖α‖IS.
3. ‖α ∧ β‖IS = ‖α‖IS ∩ ‖β‖IS.
4. ‖α ∨ β‖IS = ‖α‖IS ∪ ‖β‖IS.

For all formulas α ∈ Σ(IS) and for all objects x ∈ U we will denote x �IS α
if and only if x ∈ ‖α‖IS.

Definition 3. [2], [12] If IS1 = (U1, A1) and IS2 = (U2, A2) are information
systems, then an infomorphism between IS1 and IS2 is a pair (f∧, f∨) of func-
tions f∧ : Σ(IS1) → Σ(IS2), f∨ : U2 → U1, satisfying the following equivalence

f∨(x) �IS1
α if and only if x �IS2

f∧(α), (1)

for all objects x ∈ U2 and for all formulas α ∈ Σ(IS1).

The infomorphism will be denoted shortly by (f∧, f∨) : IS1 � IS2.
Let us consider a simple example of infomorphism related to object granula-

tion.

Proposition 1. Let IS1 = (U, A) and IS2 = (U/IND(A), A) where IND(A)
is the A-indiscernibility relation [5] and a([x]IND(A)) = a(x) for a ∈ A and
x ∈ U (notice that a on the left hand side of the equality is from IS2). Then we
have two infomorphisms

(id, sel) : IS1 � IS2 (id, i) : IS2 � IS1 (2)

where id(α) = α for any α definable over IS1 (IS2), sel([x]IND(A)) ∈ [x]IND(A),
and i(x) = [x]IND(A) for any x ∈ U .

The above definition of infomorphisms can be generalized by changing the
definition of satisfiability relation �IS . Instead of crisp definition (i.e., either
x �IS α or non(x �IS α) for any x ∈ U) one can use a rough satisfiability relation
specified by three binary relations �

i
IS⊆ U × Σ(IS) where i ∈ {0, 1, ?}. Such

relations can be defined relative to a given indiscernibility relation IND(B), for
some B ⊆ A, by

1. x �
1
IS,B α if and only if [x]IND(B) ⊆ ‖α‖IS (i.e., x ∈ LOW (ASB , ‖α‖IS));

2. x �
?
IS,B α if and only if [x]IND(B)∩‖α‖IS 6= ∅ and [x]IND(B)∩(U−‖α‖IS) 6=

∅ (i.e., x ∈ UPP (ASB , ‖α‖IS) − LOW (ASB , ‖α‖IS));



3. x �
0
IS,B α if and only if [x]IND(B) ⊆ ‖α‖IS if and only if

x ∈ LOW (ASB , U − ‖α‖IS).

for any x ∈ U and for any α ∈ Σ(IS). Observe that using the rough set ap-
proach we are not restricted to such three valued satisfiability. For example,
one can use some additional information about shades of boundary region for
introducing more degrees (values). In particular one can consider a rough approx-
imation of fuzzy satisfiability relation. Yet another satisfiability relation should
be considered assuming that in set approximation some inductive reasoning is
used. Properties of infomorphisms over such satisfiability relations will be stud-
ied elsewhere.

3 Constrained Sums of Information Systems

In this section we consider operations on information systems that can be used
in searching for hierarchical patterns. The operations are parameterized by con-
straints. Hence, in searching for relevant patterns one can search for relevant
constraints and elementary information systems used to construct hierarchical
patterns represented by constructed information systems.

This operation is more general than theta join operation used in databases
[3]. We start from the definition in which the constraints are given explicitly.

Definition 4. Let ISi = (Ui, Ai) for i = 1, . . . , k be information systems and
let R be a k-ary constraint relation in U1 × . . . × Uk, i.e., R ⊆ U1 × . . . × Uk.
These information systems can be combined into a single information system
relatively to R, denoted by +R(IS1, . . . , ISk), with the following properties:

– The objects of +R(IS1, . . . , ISk) consist of k-tuples (x1, . . . , xk) of objects
from R, i.e., all objects from U1 × . . . × Uk satisfying the constraint R.

– The attributes of +R(IS1, . . . , ISk) consist of the attributes of A1, . . . , Ak,
except that if there are any attributes in common, then we make distinct
copies, so as not to confuse them.

In case where R = U1 × . . . × Uk we will write +(IS1, . . . , ISk) instead of
+R(IS1, . . . , ISk).

Usually the constraints are defined by conditions expressed by Boolean com-
bination of descriptors of attributes (see Section 2.2). It means that the con-
straints are built from expressions a in V , where a is an attribute and V ⊆ Va,
using propositional connectives ∧, ∨, ¬. Observe, that in the constraint definition
we use not only attributes of parts (i.e., from information systems IS1, . . . , ISk)
but also some other attributes specifying relation between parts.

Let us also note that constraints are defined using primitive (measurable)
attributes different than those from information systems describing parts. This
makes the constrained sum different from the theta join [3]. On the other hand
one can consider that the constraints are defined in two steps. In the first step we
extend the attributes for parts and in the second step we define the constraints
using some relations on these new attributes.



Let us observe that the information system +R(IS1, . . . , ISk) can be also
described using an extension of the sum +(IS1, . . . , ISk) by adding a new binary
attribute that is the characteristic function of the relation R and by taking a
subsystem of the received system consisting of all objects having value one for
this new attribute.

The constraints used to define the sum (with constraints) can be often spec-
ified by information systems. The objects of such systems are tuples consisting
of objects of information systems that are arguments of the sum. The attributes
describe relations between elements of tuples. One of the attribute is a char-
acteristic function of the constraint relation (restricted to the universe of the
information system). In this way we obtain a decision system with the decision
attribute defined by the characteristic function of the constraint and conditional
attributes are the remaining attributes of this system. From such a decision table
one can induce a classifier for the constraint relation. Next, such a classifier can
be used to select tuples in the construction of a constrained sum.

The constructed constrained sum of information systems can consist of some
incorrect objects. This is due to improper filtering of objects by the classifier
for constraints induced from data (with accuracy usually less than 100%). One
should take this issue into account in constructing nets of information systems.

4 Hierarchical Modelling

Problems of approximation of complex concepts create nowadays a challenge
for science (see, e.g., [8], [17], [11]). For example, in identification of dangerous
situations on the road by unmanned vehicle aircraft (UAV), the target concept
is too complex to be directly approximated from feature value vectors. One of
the emerging approaches to deal with such cases is the hierarchical (or layered)
learning [15], [1] approach to concept approximation.

In our project we attempt to built a software system supporting the mod-
elling process of hierarchical learning. This software will help to discover relevant
patterns for complex concepts. The modelling process is based on constructing
successively relevant constrained sums toward the complex concept approxima-
tion. It is important to note that in such hierarchical modelling we gradually
construct (induce) new sets. In construction of a given target concept approx-
imations on a higher level we use the already constructed approximations for
simpler concepts and domain knowledge about the new target concept to find
its approximations. Domain knowledge can be represented in different way, e.g.,
by means of decision tables describing on a sample of objects a relation of the
concept with already defined concepts or by dependencies between concepts.

For structural objects we usually have more complex relational structures
than those represented so far by information systems [5]. Starting from the basic
level of hierarchical modelling we often have to deal with relations (on objects)
of arity higher than one, together with unary predicates corresponding to de-
scriptors widely used in information systems. For example, often the to be a part
to a degree relation [11] or some time related relation is used. Approximations of



concepts on this level are derived by means of neighbourhoods of objects defined
by the uncertainty function and the rough inclusion [9], [11].

Hence, we propose the following definition of decision systems for structural
objects.

Definition 5. Let R be a relational structure over a (finite) universe U and
let NR be a family of neighbourhoods, i.e., relational structures that are sub-
structures of restrictions of R to subsets of U . A decision system over the rela-
tional structure R and the family of neighbourhoods NR is any decision system
DT = (NR, A, d) [5].

Let us consider an example of a neighbourhood family NR. Assume N(x) ⊆ U
is selected for any object x ∈ U0 ⊆ U where U0 is a finite sample of U . Then
NR is equal to the set of all restrictions of R to N(x) for x ∈ U0. For real-life
applications it is necessary to discover (from given data and domain knowledge)
relevant relational structure R, family of neighbourhoods NR as well as the set
of conditional attributes A over such neighbourhoods.

Higher arity relations on objects can be often approximated from data. How-
ever, in some cases such relations are explicitly defined on basic objects (e.g.,
using a distance between objects) that can be indiscernible [5]. Then a granu-
lation of these relations should be performed what leads to relations defined on
neighbourhoods of objects rather than on objects [6].

For decision problems with complex structural objects one should consider
hierarchical structures of information systems over different neighbourhood fam-
ilies representing parts of different relational structures. Any higher level of such
a hierarchy is defined over the relational structures of the lower levels. The above
definition of decision systems can be also used on higher levels of hierarchical
modelling.

The relational structures constructed on the lower level of hierarchical con-
struction are used to define new information systems on the next level of con-
struction. Such information systems for more complex objects are defined by
a composition of information systems from lower level of hierarchy represent-
ing parts of these more complex objects [12]. Each object on a higher level of
hierarchical construction represents partial information about neighbourhoods
(relational structures) of composed information systems, i.e., it consists of a sub-
set of the universe together with object relationships defined by relations from
the underlying relational structures. In specification of objects on higher levels
some constraints between composed neighbourhoods from lower levels are also
used. In this way neighbourhoods are generalisations of windows, widely used in
temporal reasoning (e.g., time windows in time series analysis).

The neighbourhoods of objects from the universe on a higher level of hierar-
chy are constructed using the following information:

1. parts of the object structure represented by neighbourhoods on lower level
of hierarchy (by applying some operations to them);

2. attributes (formulas) defined over the neighbourhoods constructed on the
lower level of hierarchy;



3. formulas describing constraints between composed neighbourhoods from the
lower level of hierarchy (that are also based on new conditional attributes
for the higher level);

4. degrees to which (at least) the considered above formulas are satisfied.

In spatio-temporal reasoning we often have to deal with information systems
called decision tables, i.e., information systems with a distinguished decision at-
tribute [5]. The approximation of decision classes is expressed by conditional
attributes of the decision system. The conditional attributes over neighbour-
hoods representing objects in such decision tables should be relevant for approx-
imation of decision classes defined by the decision. For structural objects these
conditional attributes are dependent on the neighbourhood structure. Important
problems for spatio-temporal reasoning include the discovery of neighbourhoods
and their properties relevant for decision classes approximation. For other appli-
cations, such as multi-criteria decision making, the relevant neighbourhoods are
given and only their relevant properties should be discovered. The conditional
attributes of decision systems on a higher level are defined over neighbourhoods
available on that level. Such conditional attributes can also be defined by clas-
sifiers, in particular, rough-fuzzy classifiers [11].

The above described modelling process can be expressed by means of con-
strained sums of information systems. Constraints are expressed in some lan-
guage that is interpreted in a set of tuples of composed information systems.
Formulas expressing constraint for a given sum are built using relational sym-
bols related to the components as well as some other relational symbols used
to “filter” the relevant tuples for pattern modelling in concept approximations.
Hence, constraints should define a type of tuples as well as their diversity.

In the following section we present examples of languages for constraint mod-
elling.

5 Constraints in Hierarchical Modelling

In this section we discuss an important problem of searching for relevant con-
straints in a given language of constraints (called also the pattern language).
Such relevant constraints make it possible to construct relevant patterns in con-
strained sums of information systems. We present examples of such languages.
Observe that constraints are parameters of constrained sum. Hence, any pattern
language describes a set of possible constrained sum operations. Searching for
relevant constraints can be treated as a searching for relevant constrained sum
operations.

Our general idea is based on the assumption that in searching for relevant
patterns for target concepts the induction can be performed successfully only if
the target concept is “not too far” from the already approximated concepts. The
phrase “not far” means that one can expect to find the relevant patterns in the
language used for approximation of the target concept from simpler concepts.
In this way dependencies between “close” concepts can be modelled. Such de-
pendencies are taken from domain knowledge. Hierarchical schemes of reasoning



from domain knowledge can be used in searching for complex patterns relevant
for complex target concepts that are “far from” the available basic concepts. The
phrase “far from” means that one can hardly expect that such patterns can be
induced directly from the patterns relevant for the basic concepts. In this way,
using the domain knowledge, one can gradually construct relevant patterns for
concepts that can lead finally to the patterns for the target complex concept.

5.1 Conjunctions of Descriptors and Conjunctions of Generalized

Descriptors

The language of Boolean combination of descriptors and its semantics are defined
in Section 2.2. Now we consider some sublanguages of this language.

The first example is a language Ldes consisting expressions that are conjunc-
tion of descriptors over attributes from information systems from arguments of
constrained sum. Any constraint from Ldes defines a pattern for the constructed
constrained sum of information system. Such pattern is relevant with respect to
the target concept related to the constructed constrained sum if it is included to
a satisfactory degree in such concept. The resulting constraint can be described
as a disjunction of relevant patterns that make it possible to define the target
concept approximation.

Searching for relevant patterns in Ldes can be realized by generating decision
rules from a decision table constructed in the following way (see also [11]):

1. Extract a sample consisting of a subtable of the sum of considered infor-
mation systems together with a decision, given by expert, expressing if the
object is matching the target concept.

2. Generate decision rules from such decision table using rough set methods
(see, e.g., [18]). The left hand sides of decision rules for the decision corre-
sponding to the target concept define relevant patterns, certainly one can
consider approximate decision rules that are included into the target con-
cept to a satisfactory degree. The degree can be expressed by confidence and
support coefficients [11].

Patterns from the language Ldes are the simplest ones. The generalization
is obtained by conjunction only some of the descriptors from arguments of the
constrained sum of information systems instead of the total their descriptions
from argument information systems.

Now, we explain how the process of searching for relevant patterns over a
more expressible language for constraints is possible. Instead of descriptors we
consider so called generalized descriptors of the form (a in V ) where V ⊆ Va.
The problem of searching for relevant patterns is now related to searching for the
relevant conjunctions of generalized descriptors over attributes from information
systems composed by the constrained sum. Heuristic searching for such patterns
have been proposed by several authors (see, e.g., [1]). One can apply them to
samples of the sum of information systems completed to decision tables by adding
the expert decision for the considered target concept.



5.2 Patterns Extracted from Classifiers

An interesting language that can be used in searching for relevant patterns is the
language of patterns extracted from already induced classifiers on some training
data sets for simpler concepts [1]. We present an example illustrating such an
approach.

For a given a decision table DT = (U, A, d) with Vd = {1, . . . , r} [5] by
RULES(DT ) we denote a set of decision rules induced by some rule extraction
method [18]. For any new object x ∈ U , where U ⊆ U let MatchRules(DT, x)
be the set of rules from RULES(DT ) supported by x. One can define the
rough membership function µCLASSk

: U → [0, 1] for the concept determined
by CLASSk = {x ∈ U : d(x) = k} (where k = 1, . . . , r) by

1. Let Ryes(x) be the set of all decision rules from MatchRules(DT, x) for kth

class and let Rno(x) ⊂ MatchRules(DT, x) be the set of decision rules for
other classes.

2. We define two real valued functions wyes(x), wno(x), called “for” and
“against” weight functions for the object x by

wyes(x) =
∑

r∈Ryes(x)

strength(r), wno =
∑

r∈Rno(x)

strength(r), (3)

where strength(r) is a normalized function depending on length, support,
confidence of r and some global information about the decision table DT
like table size, class distribution.

3. One can define the value of µθ,ω
CLASSk

(x) by

µθ,ω
CLASSk

(x) =















undefined if max(wyes(x), wno(x)) < ω
0 if wno(x) − wyes(x) ≥ θ and wno(x) > ω
1 if wyes(x) − wno(x) ≥ θ and wyes(x) > ω
θ+(wyes(x)−wno(x))

2θ
in other cases,

where ω, θ are parameters set by user. These parameters make it possible
in a flexible way to control the size of boundary region for the concept
approximations.

Now, one can include into the language of patterns used to define constraints
expressions interpreted as the above parameterized functions µθ,ω

CLASSk
. Such ex-

pressions are induced for concepts corresponding to arguments of the constrained
sum and their composition can be used in searching for relevant patterns for the
target concept approximation. Certainly, one can construct such patterns using
other weight functions or other strategies for synthesizing classifiers such as k-nn
(see, e.g., [1]). In this way it is possible to enrich the expressibility of the lan-
guage. The relevant constraints for the target concept related to the constrained
sum of information systems are next extracted from such a language.



5.3 Rough Patterns for Vague Concepts

Another language of patterns that can be used in searching for relevant con-
straints is the language of rough-fuzzy patterns for vague concepts.

Let us first discuss shortly an example of rough-fuzzy patterns.
Let DT = (U, A, d) be a decision table with binary decision d : U −→ {0, 1},

i.e., d is the characteristic function of some X ⊆ U . If the decision table is
inconsistent [5] then one can define a new decision deg such that deg(x) ∈ [0, 1]
for any x ∈ U can be interpreted as a degree to which x belong to X [5], [11].
Let us consider such new decision table DT ′ = (U, A, deg).

For given reals 0 < c1 < . . . < ck where ci ∈ (0, 1] for i = 1, . . . , k we define
ci-cut by Xi = {x ∈ U : ν(x) ≥ ci} for i = 1, . . . , k. Assume that X0 = U and
Xk+1 = Xk+2 = ∅.

Any B ⊆ A satisfying the following condition:

UPP (ASB , (Xi − Xi+1)) ⊆ (Xi−1 − Xi+2), for i = 1, . . . , k, (4)

is called relevant for approximation of cuts 0 < c1 < . . . < ck in DT ′.
The condition (4) expresses that fact that the boundary region of the set

between any two successive cuts is included into the union of this set and two
adjacent to it such sets.

The language Lrf of rough-fuzzy patterns for DT ′ consists of tuples
(B, c1, . . . , ck) defining approximations of regions between cuts, i.e.,

(LOW (ASB , (Xi − Xi+1)), UPP (ASB , (Xi − Xi+1))), for i = 0, . . . , k, (5)

where we assume that B is relevant for approximation of cuts 0 < c1 < . . . < ck

in DT ′.
Observe that searching for relevant patterns describing regions between cuts

is related to tuning parameters (B, c1, . . . , ck) to obtain relevant patterns for
the target concept approximation.

From concept description in DT ′ (on a sample U) of one can induce the
concept approximation on an extension U ∗ ⊇ U . We consider, in a sense, richer
classifiers, i.e., the classifiers that make it possible to predict different degrees to
which the concept is satisfied. Such degrees can correspond to linguistic terms
(e.g., low, medium, high) linearly ordered and to the boundary regions between
successive degrees. Next we construct language of patterns from such classifiers
analogously like in Section 5.2. Searching for patterns defining constraints aims
at extracting patterns form such language corresponding to the arguments of
the constrained sum that after composing create patterns include to the target
concept to a satisfactory degree.

5.4 Modelling Clusters

In this subsection we discuss a modelling of clusters.
Let IS = (U, A) be an information system and let Sim ⊆ U × U be a

similarity relation. We assume that Sim is a reflexive and symmetric relation,
i.e.,



– (x, x) ∈ Sim for any x ∈ U ,
– if (x, y) ∈ Sim then (y, x) ∈ Sim for any x, y ∈ U .

For every object x ∈ U we define a cluster {y ∈ U : (x, y) ∈ Sim} of objects.
Let us define a new information system IS∗ = (U ∪ {∗}, A∗) where for every

attribute a∗ ∈ A∗ and for every object x ∈ U ∪ {∗} we use the following rules
If x 6= ∗, then a∗(x) = a(x),
If x = ∗, then a∗(x) = new, where new /∈ Va.
Let us assume that U = {x1, . . . , xn} where n > 0 is a given natural number.

We define a constrained relation R ⊆ (U ∪ {∗})n by
(y1, . . . , yn) ∈ R if and only if ∃yi∀yj(yj 6= ∗ ↔ (yi, yj) ∈ Sim).
The constrained sum +R(IS∗, . . . , IS∗) of n copies of IS∗ represents a set of

clusters.
Hence, the objects in the constrained sum can be interpreted as similarity

classes of objects (∗ on a ith position in the sequence represents that xi is not
in the similarity class).

Observe that also new attributes can be represented using constrained sums
of information systems. Let us consider a simple illustrative example.

Let t be a given real number from [0, 1]. For example we can construct an
attribute at

avg such that the domain Vat
avg

= {0, 1}. We assume that for any

sequence (x1, . . . , xn) of objects from the universe of constrained sum

at
avg((x1, . . . , xn)) = 1 holds

if and only if
∑

{i:a∗(xi)6= new}

a∗(xi) > card({i ∈ {1, . . . , n} : xi 6= ∗}) · t.

The above considerations can be summarized as follows. Constraints used to
define constrained sums of information systems specify a type of new composed
objects as well as their admissible properties.

Conclusions

We have outlined an approach based on constrained sum operations for hierar-
chical modelling of patterns. We plan to apply the approach for construction of
patterns relevant for approximation of complex concepts. Using domain knowl-
edge one can construct networks of parameterized constrained sums, i.e., in such
networks each internal node is labelled by a set of constraints rather then by one
constraint. A software system making it possible to search for relevant patterns
by optimization of such parameters is the main goal of our project.
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