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Abstract. Information sources provide us with granules of information that must be
transformed, analyzed and built into structures that support problem solving. Lotfi A.
Zadeh has recently pointed out to the need to develop a new research branch called
Computing with Words and Perceptions (CWP). One way to achieve CWP is through
Granular Computing (GC). The main concepts of GC are related to information gran-
ule calculi. One of the main goals of information granule calculi is to develop algorith-
mic methods for construction of complex information granules from elementary ones
by means of available operations and inclusion (closeness) measures. These construc-
tions can also be interpreted as approximate schemes of reasoning (AR-schemes).
The constructed complex granules represent a form of information fusion. Such con-
structed granules should satisfy some constraints like quality criteria or/and degrees
of granule inclusion in (closeness to) a given information granule. In the chapter we
discuss the idea of the rough neurocomputing paradigm for inducing AR-schemes
based on rough sets and, in particular, on rough mereology. Information granule de-
composition methods are important components of methods for AR-schemes induced
from data and background knowledge. We report some recent results on information
granule decomposition.

Keywords: approximate reasoning by agents, rough sets, rough mereology, information gran-
ulation, pattern, granular computing, approximate reasoning schemes , decomposition, infor-
mation fusion, rough neuron, rough neurocomputing

1 Introduction

Lotfi A. Zadeh has recently pointed out to necessity of developing a new research branch
called Computing with Words and Perceptions (CWP) (see, e.g., [58, 60, 59]). The goal of
this new research direction is to build foundations for future intelligent computers and in-
formation systems performing computations on words rather than on numbers. In this new
paradigm different soft computing tools like neural networks, fuzzy sets, rough sets or genetic
algorithms should work in a complementary not in a competitive fashion. A great challenge
is to develop the foundations for this new computing paradigm and to show that they can help
to demonstrate new applications.

Information granulation belongs to intensively studied topics in soft computing (see, e.g.,
[58, 60, 59, 17, 54, 36, 25]). One of the recently emerging approaches to deal with informa-
tion granulation is based on information granule calculi (see, e.g., [35, 40, 41, 45, 24]). The
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development of such calculi is important for making progress in many areas like object iden-
tification by autonomous systems (see, e.g., [4, 56]), Web mining (see, e.g., [13]) or spatial
reasoning (see, e.g., [55, 6, 7]). In particular, reasoning methods using background knowl-
edge as well as knowledge extracted from experimental data (e.g., sensor measurements)
represented by concept approximations [4] are important for making progress in such areas.
Moreover, such calculi are important for the development of sensor fusion strategies (see,
e.g., [3, 8, 29, 30]). One should take into account that modeling complex phenomena entails
the use of local models (captured by local agents) which next should be fused. This process
involves the negotiations between agents [12] to resolve contradictions and conflicts in local
modeling. This kind of modeling will become more and more important in solving complex
real-life problems which we are unable to model using traditional analytical approaches. The
latter approaches lead to exact models; however, the necessary assumptions used to create
them are causing the resulting solutions to be too far from reality to be accepted (see Figure
1).

Figure 1: Traditional analytical vs multi-agent systems modeling (R is for reality, M,M1,M2 denote models)

One way to achieve CWP is through Granular Computing (GC). The main concepts of GC
are related to information granulation and in particular to information granules. Information
granules, due to Zadeh [58], are clumps of objects (points) which are drawn together by
indistinguishability, similarity or functionality. Several approaches concerning formulation
of information granule concept have been proposed.

Any approach to information granulation should make it possible to define complex in-
formation granules (e.g., in spatial and temporal reasoning, one should be able to determine
if the situation on the road (see Figure 2) is safe on the basis of sensor measurements [55] or
to classify situations in complex games, like soccer [50]. These complex information gran-
ules consitute a form of information fusion. Any calculus of complex information granules
should allow to: (i) deal with vagueness of information granules; (ii) develop strategies of
inducing multi-layered schemes of complex granule construction; (iii) construct robust infor-
mation granules with respect to deviations of granules from which they are constructed; (iv)
develop adaptive strategies for reconstruction of induced schemes of complex information
granule synthesis.

To deal with vagueness, one can adopt fuzzy set theory [57] or rough set theory [27]
either separately or in combination [22]. The second requirement is related to the problem
of understanding of reasoning from measurements to perception (see, e.g., [59]) and to con-
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Figure 2: Classification of situations

cept approximation learning in layered learning [50] as well as to fusion of information from
different sources (see., e.g., [58, 60, 59]). The importance of searching for Approximate Rea-
soning Schemes (AR-schemes, for short) as schemes of new information granule construc-
tion, is stressed also in rough mereology. In general, this leads to hierarchical schemes of new
information granule construction. This is closely related to ideas of co-operation and conflict
resolution in multi-agent systems [12]. Among important topics studied are methods for spec-
ifying operations on information granules; in particular, for their construction from data and
background knowledge, and methods for inducing the hierarchical schemes of information
granule construction. One of possible approaches is to learn such schemes using evolutionary
strategies. Robustness of the scheme means that any scheme produces rather a higher order
information granule that is a clump (e.g., a set) of close information granules rather than a
single information granule. Such a clump is constructed, e.g., by means of the scheme from
the Cartesian product of input clumps (e.g., clusters) satisfying some constraints. The in-
put clumps are defined by deviations (up to acceptable degree) of input information granules.
Using multi-agent terminology, let us also observe that local agents perform operations on in-
formation granules from granule sets ”understandable” by them. Hence, granules submitted
as arguments by other agents should be approximated by means of properly tuned approxima-
tion spaces creating interfaces between agents. These interfaces can be, in the simplest case,
constructed on the basis of exchanged information about agents stored in the form of decision
data tables. From these tables the approximations of concepts can be constructed using rough
set approach [44]. In our model we assume that for any agent ag and its operation o(ag) of
arity n there are approximation spaces AS1(o(ag), in), . . . , ASn(o(ag), in) which will filter
(approximately) the granules received by the agent for performing the operation o(ag). In
turn, the granule sent by the agent after performing the operation is filtered (approximated)
by the approximation space AS(o(ag), out). These approximation spaces are parameterized
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with parameters allowing to optimize the size of neighborhoods in these spaces as well as the
inclusion relation [36] using as a criterion for optimization the granule approximation qual-
ity. Approximation spaces attached to an operation correspond to neuron weights in neural
networks whereas the operation performed by the agent corresponds to the operation realized
on the vector of real numbers by the neuron. The generalized scheme of agents is returning a
granule in response to input information granules. It can be for example a cluster of elemen-
tary granules. Hence, our schemes (being extensions of schemes for synthesis of complex
objects (or granules) developed in [35] and [33]) realize much more general computations
then neural networks operating on vectors of real numbers. The question, if such schemes can
be efficiently simulated by classical neural networks is open. We would like to call extended
AR-schemes for complex object construction rough neuroschemes (for complex object con-
struction). The stability of such schemes corresponds to the resistance to noise of classical
neural networks.

The methods of inducing AR-schemes transforming information granules into informa-
tion granules studied using rough set methods in hybridization with other soft computing
approaches create a core for Rough Neurocomputing (RNC) (see, e.g., [23, 37, 48, 24]).

Another important problem concerns relationships between information granules and
words (linguistic terms) in a natural language and also a possibility to induce AR-schemes as
schemes approximating reasoning in natural language. This can strengthen the links between
RNC and CWP. It is of a great importance for many applications. For example, in case of
Web mining (see Figure 3) one is interested to extract documents relevant for the user query
or dialog with the user. Hence, e.g., the problem arises, how to construct information granule
describing a clump of documents the most relevant to the user query.

Figure 3: Web mining
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Among approaches to information granulate calculi is RNC attempting to define infor-
mation granules using rough sets and rough mereology (introduced to deal with vague con-
cepts) in hybridization with methods of constructing more complex information granules by
schemes analogous to neural networks.

In RNC, computations are performed on information granules. Building the foundations
of RNC requires the theory of artificial neural networks, rough set theory [27] and its exten-
sions like rough mereology (see, e.g. [31, 32, 33, 36, 37, 38]) as well as some tools created
by hybridization with other soft computing approaches, in particular with fuzzy set theory
[22, 57, 60] and evolutionary programming [15, 23].

In developing of RNC, special role have different hybrid methods using soft computing
tools used to induce the robust AR-schemes for complex information granule construction
and object classification as well as methods based on integration of rough sets with neural
network techniques because they are crucial for developing the theory of RNC for synthesis
of approximate schemes of reasoning.

We outline a rough neurocomputing model as a basis for GC. Our approach is based on
rough sets, rough mereology and information granule calculus.

Rough Mereology [32, 35] is a paradigm allowing for a synthesis of main ideas of two
paradigms for reasoning under uncertainty: fuzzy set theory and rough set theory. We present
applications of rough mereology to the important theoretical idea put forth by Lotfi Zadeh
[58, 59], i.e., granularity of knowledge by presenting the idea of the rough neurocomputing
paradigm.

Information granule decomposition methods are important components of methods for
AR-scheme inducing from data and background knowledge. In the chapter we discuss some
information granule decomposition methods.

AR-schemes are obtained by means of relevant patterns for a given task decomposition of
the identified or classified complex objects. The problem of deriving such schemes is closely
related to perception [10, 2, 59, 53, 39].

In the chapter we assume AR-schemes define parameterized operations on information
granules. We discuss problems of tuning these parameters to derive from them relevant gran-
ules included in (or close to) target concepts to a satisfactory degree. Target concepts are
assumed to be incompletely specified and/or vague.

We emphasize an important property of GC related to the necessity of lossless compres-
sion tuning for complex object constructions. It means that we map a cluster of constructions
into one representation. Any construction in the cluster is delivering objects satisfying the
specification to a satisfactory degree if only input objects to synthesis are sufficiently close
to selected standards (prototypes). In rough mereological approach clusters of constructions
are represented by the so–called stable AR-schemes (of co–operating agents), i.e., schemes
robust to some deviations of parameters of transformed granules. In consequence, the stable
AR-schemes are able to return objects satisfying to a satisfactory degree the specification
not only from standard (prototype) objects but also from objects sufficiently close to them
[32, 33]. In this way any stable scheme of complex object construction is a representation of
a cluster of similar constructions from clusters of elementary objects.

One can distinguish two kinds of considered parts (represented, e.g., by sub-formulas
or sub-terms) of AR-schemes. Parts of the first type are represented by expressions from a
language, called the domestic language Ld, that has known semantics (consider, for example,
a given information system [27]). Representations of parts of the second type of AR-scheme
are from a language, called foreign language Lf (e.g., natural language, that has semantics
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definable only in an approximate way (e.g., by means of patterns extracted using rough, fuzzy,
rough–fuzzy or other approaches). For example, the parts of the second kind of scheme can
be interpreted as soft properties of sensor measurements [4].

For a given expression e, representing a given scheme that consists of sub-expressions
from Lf we propose to search for relevant approximations in Ld of the foreign parts from
Lf and next to derive global patterns from the whole expression after replacing the foreign
parts by their approximations. This can be a multilevel process, i.e., we are facing problems
of discovered pattern propagation through several domestic-foreign layers.

Let us consider some strategies of patterns construction from schemes. The first strategy
entails searching for relevant approximations of parts using a rough set approach. This means
that each part from Lf can be replaced by its lower or upper approximation with respect to
a set B of attributes. The approximation is constructed on the basis of relevant data table
[4]. With the second strategy parts from Lf are partitioned into a number of sub-parts corre-
sponding to cuts (or the set theoretical differences between cuts) of fuzzy sets representing
vague concepts and each sub-part is approximated by means of rough set methods. The third
strategy is based on searching for patterns sufficiently included in foreign parts. In all cases,
the extracted approximations replace foreign parts in the scheme and candidates for global
patterns are derived from the scheme obtained after the replacement. Searching for relevant
global patterns is a complex task because many parameters should be tuned, e.g., the set of
relevant features used in approximation, relevant approximation operators, the number and
distribution of objects from the universe of objects among different cuts and so on. One can
use evolutionary techniques for relevant pattern searching to obtain optimal parameters with
respect to the quality of synthesized patterns.

We propose an approach for extracting from data patterns relevant to a given target con-
cept. The approach is based on information granule decomposition strategies. It is shown
that the discussed strategies can be based on the developed rough set methods for decision
rules generation and Boolean reasoning [14]. We discuss in particular methods for decompo-
sition which can be based on background knowledge. In [20, 45], the reader can find another
approach to decomposition.

The chapter is structured as follows. Section 2 includes examples of information granules
and operations on granules. In particular, in Section 2.4 we discuss parameterized rough and
fuzzy information granules. Sections 3, 4 are dedicated to rough neurocomputing paradigm.
In Section 5 methods for decomposition of information granules are outlined.

The chapter summarizes and extends some results presented in our previous works, pre-
sented in particular in [31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49].

2 Information Granules

2.1 Rough Sets and Approximation Spaces

We recall general definition of approximation space [43].
A parameterized approximation space (with parameters # and $) is a system

AS#,$ = (U, I#, ν$) (1)

where

• U is a non-empty set of objects;



Approximate Reasoning in Distributed Environments 7

• I# : U → P (U), where P (U) denotes the powerset of U , is an uncertainty function;

• ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function.

We write I, ν instead of I#, ν$ to simplify notation. If X = {x} and Y = {y} we also
write I(x) and ν(x, y) instead of I(X) and ν(X,Y ), respectively. If p ∈ [0, 1] then νp(x, y)
(νp(x, y)) denotes the following condition ν(x, y) ≥ p (ν(x, y) ≤ p ) holds.

The uncertainty function defines for every object x a set of similarly described objects,
i.e., the neighborhood I#(x) of x. A constructive definition of uncertainty function can be
based on the assumption that some metrics (distances) are given on attribute values. By νSRI

we denote the standard rough inclusion function defined by

νSRI(X,Y ) =

{

card(X∩Y )
card(X)

if X 6= ∅

1 if X = ∅.

A set X ⊆ U is definable in AS#,$, if it is a union of some values of the uncertainty
function.

The inclusion function defines the degree of inclusion between two subsets of U [43]. The
inclusion function definition has been generalized in rough mereology to the rough inclusion.

The lower and the upper approximations of subsets of U are defined as follows.
For a parameterized approximation space AS#,$ = (U, I#, ν$) and any subset X ⊆ U the

lower and the upper approximation are defined by

LOW (AS#,$, X) = {x ∈ U : ν$ (I# (x) , X) = 1}

UPP (AS#,$, X) = {x ∈ U : ν$ (I# (x) , X) > 0} , respectively. (2)

The set approximations can be defined in a more soft way by allowing to classify an object x
to the lower approximation of X if the neighborhood I#(x) is included in X at least to a given
a priori satisfactory degree p ∈ (0, 1] and to the complement of X if I#(x) is included in X
at most to a degree q < p where q is also given a priori degree. Moreover, one can observe
that the neighborhood I#(x) can be usually defined as a collection of close objects, i.e., it
can be defined using the rough inclusion. Sets of objects being definable in a given language
collections of objects from data table can be treated as examples of information granules.
We can conclude then that the very primitive notions are information granules and inclusion
(closeness) relations between them. This has been the starting point for investigating rough
mereology.

Approximations of concepts (sets) are constructed on the basis of background knowledge.
Obviously, concepts are also related to new (unseen) objects. Hence it is very useful to define
parameterized approximations with parameters tuned in the searching process for approxima-
tions of concepts. This idea is crucial for methods of construction of concept approximations
in particular for rough set methods. In our notation #, $ denote vectors of parameters which
can be tuned in the process of concept approximation. For the discussion on rough sets in
inductive reasoning the reader is referred to [42].

Let us now recall some basic definitions [14]. If IS = (U,A) is an information system
then (a, v) denotes a descriptor defined by the attribute a and its value v, α denotes Boolean
combination of descriptors, and [α]IS (or [α]A) its meaning in IS, i.e., the set of all objects
from U satisfying α. The A-lower and A-upper approximation of X ⊆ U with respect to
A are denoted by AX and AX , respectively. By Inf IS

A (u) (or by InfA(u)) we denote the
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signature of x in IS (or in A), i.e., the set {(a, a(x)) : a ∈ A} and by INF IS(A) the set
{InfA(u) : u ∈ U}. If DT = (U,A, d) is a decision table then we assume the set Vd of
values of the decision d to be equal to {1, . . . , r(d)} for some positive integer r(d) called the
range of d. The decision d determines a partition

{

C1, . . . , Cr(d)

}

of the universe U , where
Ck = {x ∈ U : d(x) = k} for 1 ≤ k ≤ r(d). The set Ck is called the k-th decision class of
DT .

2.2 Syntax and Semantics of Information Granules

Usually, together with an approximation space, there is also specified a set of formulas Φ
expressing properties of objects. Hence, we assume that together with the approximation
space AS#,$ there are given

• a set of formulas Φ over some language;

• semantics Sem of formulas from Φ, i.e., a function from Φ into the power set P (U) .

Let us consider an example [27]. We define a language LIS used for elementary granule
description, where IS = (U,A) is an information system. The syntax of LIS is defined
recursively by

(a ∈ V ) ∈ LIS, for any a ∈ A and V ⊆ Va (3)

if α ∈ LIS then ¬α ∈ LIS (4)

if α, β ∈ LIS then α ∧ β ∈ LIS (5)

if α, β ∈ LIS then α ∨ β ∈ LIS. (6)

The semantics of formulas from LIS with respect to an information system IS is defined
recursively by

SemIS(a ∈ V ) = {x ∈ U : a (x) ∈ V } (7)

SemIS(¬α) = U − SemIS(α) (8)

SemIS(α ∧ β) = SemIS(α) ∩ SemIS(β) (9)

SemIS(α ∨ β) = SemIS(α) ∪ SemIS(β). (10)

A typical method used by the rough set approach [27] for constructive definition of the un-
certainty function is the following: for any object x ∈ U, there is given information InfA (x)
(information signature of x in A) which can be interpreted as a conjunction EFB (x) of se-
lectors a = a (x) for a ∈ A and the set I# (x) is equal to

SemIS(EFB(x)) = SemIS

(

∧

a∈A

a = a (x)

)

. (11)

One can consider a more general case taking as possible values of I# (x) any set ‖α‖IS

containing x. Next from the family of such sets the resulting neighborhood I# (x) can be
selected. One can also use another approach by considering more general approximation
spaces in which I# (x) is a family of subsets of U (see, e.g., [16]).
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We present now syntax and semantics of examples of information granules. These gran-
ules are constructed by taking collections of already specified granules. They are parameter-
ized by parameters which can be tuned in applications. In the following sections we discuss
some other kinds of operations on granules as well as the inclusion and closeness relations
for such granules.

Let us note that any information granule g formally can be defined by a pair

(Syn(g), Sem(g)) (12)

consisting of the granules syntax Syn(g) and semantics Sem(g). However, for simplicity of
notation we often use only one component of the information granules to denote it. One can
consider another model in which these components are treated as separate granules and their
fusion produces the above pair of information granules.

Elementary granules. In an information system IS = (U,A) , elementary granules are
defined by EFB (x) , where EFB is a conjunction of selectors (descriptors) of the form
a = a (x) , B ⊆ A and x ∈ U. For example, the meaning of an elementary granule
a = 1 ∧ b = 1 is defined by SemIS (a = 1 ∧ b = 1) = {x ∈ U : a(x) = 1 & b(x) = 1} .
The number of conjuncts in the granule can be taken as one of parameters to be tuned what
is well known as the drooping condition technique in machine learning [18].

One can extend the set of elementary granules assuming that if α is any Boolean combi-
nation of descriptors over A, then (Bα) and (Bα) define syntax of elementary granules too,
for any B ⊆ A. The reader can find more details on granules defined by rough set approxi-
mations in [46, 48].

Sequences of granules. Let us assume that S is a sequence of granules and the semantics
SemIS (•) in IS of its elements have been defined. We extend SemIS (•) on S by

SemIS (S) = {SemIS (g)}g∈S . (13)

Example 1. Granules defined by rules in information systems are examples of sequences
of granules. Let IS be an information system and let (α, β) be a new information granule
received from the rule if α then β where α, β are elementary granules of IS. The semantics
SemIS ((α, β)) of (α, β) is the pair of sets (SemIS (α) , SemIS (β)) . If the right hand sides
of rules represent decision classes then among parameters to be tuned in classification is the
number of conjuncts on the left hand sides of rules. Typical goal is to search for minimal (or
less than minimal) number of such conjuncts (corresponding to the largest generalization)
which still guarantee the satisfactory degree of inclusion in a decision class [14, 18, 42].

Sets of granules. Let us assume that a set G of granules and the semantics SemIS (•) in IS
for granules from G have been defined. We extend SemIS (•) on the family of sets H ⊆ G by
SemIS (H) = {SemIS (g) : g ∈ H}. One can consider as a parameter of any such granule
its cardinality or its size (e.g., the length of such granule representation). In the first case,
a typical problem is to search in a given family of granules for a granule of the smallest
cardinality sufficiently close to a given one.

Example 2. One can consider granules defined by sets of rules [27, 14]. Assume that there
is a set of rules Rule Set = {(αi, βi) : i = 1, . . . , k} . The semantics of Rule Set is defined
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by
SemIS (Rule Set) = {SemIS ((αi, βi)) : i = 1, . . . , k} . (14)

The above mentioned searching problem for a set of granules corresponds in the case of rule
sets to searching for the simplest representation of a given rule collection by another set of
rules (or a single rule) sufficiently close to the collection [5, 52].

Example 3. Let us consider a set G of elementary information granules – describing possible
situations together – with decision table DTα representing decision tables for any situation
α ∈ G. Assume Rule Set (DTα) to be a set of decision rules generated from decision table
DTα (e.g., in the minimal form)[14]. Now let us consider a new granule

{(α,Rule Set (DTα)) : α ∈ G} (15)

with semantics defined by

{SemDT ((α,Rule Set (DTα))) : α ∈ G} = (16)

{(SemIS (α) , SemDT (Rule Set (DTα))) : α ∈ G}.

An example of a parameter to be tuned is the number of situations represented in such gran-
ule. A typical task is to search for a granule with the minimal number of situations creating
together with the corresponding to them rule sets a granule sufficiently close to the original
one.

Extension of granules defined by tolerance relation. Now we present examples of granules
obtained by application of a tolerance relation (i.e., reflexive and symmetric relation; for more
information see, e.g., [43], and [11] for clustering methods based on similarity).

Example 4. One can consider extension of elementary granules defined by a tolerance re-
lation. Let IS = (U,A) be an information system and let τ be a tolerance relation on ele-
mentary granules of IS. Any pair (τ : α) is called a τ -elementary granule. The semantics
SemIS ((τ : α)) of (τ : α) is the family {SemIS (β) : (β, α) ∈ τ}. Parameters to be tuned
in searching for relevant tolerance granule can be its support (represented by the number of
supporting it objects) and a degree of its inclusion (or closeness) in some other granules as
well as parameters specifying the tolerance relation.

Example 5. Let us consider granules defined by rules of tolerance information systems [43].
Let IS = (U,A) be an information system and let τ be a tolerance relation on elementary
granules of IS. If if α then β is a rule in IS then the semantics of a new information granule
(τ : α, β) is defined by SemIS ((τ : α, β)) = SemIS ((α, τ)) × SemIS ((β, τ)) . Parameters
to be tuned are the same as in the case of granules being sets of more elementary granules as
well as parameters of the tolerance relation.

Clustering of decision and association rules is an important problem in data mining. The
reader is referred for measures of closeness of such rules to, e.g., [5, 52].

Example 6. We consider granules defined by sets of decision rules corresponding to a given
evidence in tolerance decision tables. Let DT = (U,A, d) be a decision table and let τ be
a tolerance on elementary granules of IS = (U,A). Now, any granule (α,Rule Set (DTα))
can be considered as a representative for the information granule cluster

(τ : (α,Rule Set (DTα))) (17)
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with the semantics

SemDT ((τ : (α,Rule Set (DTα)))) = (18)

{SemDT ((β,Rule Set (DTβ))) : (β, α) ∈ τ} .

One can see that the considered case is a special case of information granules from Example
3 with G defined by tolerance relation.

Dynamic granules. An elementary granule α of the information system IS is non-empty if
‖α‖IS 6= ∅. A non-empty elementary granule β of IS is an extension of α if β = α ∧ γ,
where γ is an elementary granule. Let us consider dynamic granules defined by some subsets
of

{(β,Rule Set (DTβ)) : β is an extension of α} . (19)

The semantics of these new granules is defined as in the case of sets of granules. Any set G
of elementary granules and a granule α are specifying new granules

{(β,Rule Set (DTβ)) : β is an extension of α and β ∈ G} (20)

important for decision making in dynamically changing environment. Let us consider an ex-
ample. A DT -path is any sequence π = ((α1, R1), . . . , (αk, Rk)) such that αi is an elemen-
tary non-empty granule of IS, Ri = Rule Set(DTαi

) for i = 1, . . . , k and αi = αi−1 ∧ γi−1

for some elementary atomic granule γi−1 (e.g., selector a = v) with an attribute a ∈ A not
appearing in αi−1 for i = 2, . . . , k. A granule αi−1 is called a guard of π if Ri−1 is not suffi-
ciently close to Ri (what we denote by non(clp(Ri−1, Ri)), where p is the closeness degree).
By Guard(π) we denote the subsequence of α1, . . . , αk consisting all guards of π. In appli-
cations it is important to search for a minimal (in cardinality) set of granules G satisfying
the following condition: for any maximal DT -path π of extensions of α all guards β from
Guard(π) (i.e., all points in which it is sufficient to change the decision algorithm represented
by the set of decision rules) are from G.

One can also consider dynamic granules with tolerance relation. Let DT = (U,A, d) be a
decision table and let τ be a tolerance relation on elementary granules of IS = (U,A). Two
DT -paths π = ((α1, R1), . . . , (αk, Rk)) and π′ = ((β1, R

′

1), . . . , (βl, R
′

l)) are τ -similar if and
only if (αis , βjs

) ∈ τ for s = 1, . . . , r, where Guard(π) = (αi1 , . . . , αir) and Guard(π′) =
(βj1 , . . . , βjr

). Let us assume τ has the following property:

if (β, α) ∈ τ (21)

then the granules Rule Set (DTα) and Rule Set (DTβ) are sufficiently close.

Having such tolerance relation one can search for a set G of guards of the smaller size than
before. To specify the task is enough to change in the above formulated problem the condition
for the maximal path to the following one: for any maximal path π of extensions of α there
exists a τ -similar path π′ to π such that all guards β from Guard(π′) (i.e., all points where
it is sufficient to change the decision algorithm represented by the set of decision rules) are
from G.

Labeled graph granules. We discuss graph granules and labeled graph granules to extend
previously introduced granules defined by tolerance relation and dynamic granules.
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Example 7. Let us consider granules defined by pairs (G,E) , where G is a finite set of
granules with semantics in a given information system IS = (U,A) and E ⊆ G × G. The
semantics of a new information granule (G,E) is defined by

SemIS ((G,E)) = (SemIS (G) , SemIS (E)) (22)

where

Sem(G)IS = {Sem(g)IS : g ∈ G} and (23)

Sem(E)IS = {(Sem(g), Sem(g′)) : (g, g′) ∈ E}.

Example 8. Let G be a set of granules with semantics over a given information system IS.
Labeled graph granules over G are defined by (X,E, f, h) , where E ⊆ X ×X, f : X → G
and h : E → P (G × G). We also assume one additional condition

if (x, y) ∈ E then (f(x), f(y)) ∈ h(x, y). (24)

The semantics of the labeled graph granule (X,E, f, h) is defined by

{(Sem(f(x))IS, Sem(h(x, y))IS, Sem(f(y))IS) : (x, y) ∈ E}. (25)

Let us summarize the above presented considerations. One can define the set of granules
G as the least set containing a given set of elementary granules G0 and closed with respect to
operations from a given set of operations on information granules.

We have the following examples of granule construction rules:

α1, . . . , αk-elementary granules
{α1, . . . , αk}-granule

(26)

α1, α2-elementary granules
(α1, α2)-granule

(27)

α-elementary granule , τ

(τ : α)-granule
(28)

G-a finite set of granules , E ⊆ G × G

(G,E)-granule
(29)

where τ is a tolerance relation on elementary granules.
Let us observe that in case of granules constructed with application of tolerance relation

we have the rule restricted to elementary granules. To obtain a more general rule like

α-graph granule, τ

(τ : α)-granule
(30)

where τ is a tolerance relation on elementary granules; it is necessary to extend the tolerance
(similarity, closeness) relation on more complex objects.

One more interesting class of information granules create classifiers. This example will
be discusses in one of the following sections. Parameters to be tuned are voting strategies,
matching strategies of objects against rules as well as other discussed above parameters like
closeness of granule in the target granule.

In presented examples we have discussed parameterized information granules. We have
pointed out that the process of the parameters tuning is used to induce relevant (for a given
task) information granules. In particular the process of parameter tuning is performed to
obtain a satisfactory degree of inclusion (closeness) of information granules.

In the following section, we discuss inclusion and closeness for information granules.
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2.3 Granule Inclusion and Closeness

In this section, we will discuss inclusion and closeness of different information granules in-
troduced in the previous section. The inclusion and closeness are the basic concepts related to
information granules [35, 45]. Using them one can measure the closeness of the constructed
granule to the target granule and robustness of the construction scheme with respect to devia-
tions of information granules being components of the construction. For details and examples
of closeness relations the reader is referred to [35, 45].

Let us mention that the choice of inclusion or closeness definition depends very much on
the area of application and data analyzed. This is the reason that we have decided to introduce
a separate section with this more subjective (or task oriented) part of granule semantics.

The inclusion relation between granules G,G′ to degree at least p (i.e., νp (G,G′) ≥ p)
will be denoted by νp (G,G′) . By νp (G,G′) we denote the inclusion of G in G′ to degree at
most p, i.e., that ν (G,G′) ≤ p holds. Similarly, the closeness relation between granules G,G′

to degree at least p will be denoted by clp (G,G′) . By p we denote a vector of parameters
(e.g., from the interval [0,1] of real numbers). Usually, the set of degrees is assumed to be a
lattice with null 0 and unit 1 elements.

A general scheme for construction of hierarchical granules and their closeness can be
described by the following recursive meta-rule: if granules of order ≤ k and their closeness
have been defined then the closeness clp (G,G′) (at least to degree p) between granules G,G′

of order k + 1 can be defined by applying an appropriate operator F to closeness values of
components of G,G′, respectively. Certainly, the same scheme can be applied to inclusion
measures.

Elementary granules. We have introduced the simplest case of granules in information sys-
tem IS = (U,A) . They are defined by EFB (x) , where EFB is a conjunction of selectors
of the form a = a (x) , B ⊆ A and x ∈ U. Let GIS = {EFB (x) : B ⊆ A & x ∈ U} .
In the standard rough set model [27] elementary granules describe indiscernibility classes
with respect to some subsets of attributes. In a more general setting see, e.g., [43] tolerance
(similarity) classes are described.

The crisp inclusion of α in β, where α, β ∈ {EFB (x) : B ⊆ A & x ∈ U} is defined
by SemIS (α) ⊆ SemIS (β) , where SemIS (α) and SemIS (β) are sets of objects from IS
satisfying α and β, respectively. The non-crisp inclusion, known in KDD [1], for the case of
association rules is defined by means of two thresholds t and t′:

supportIS (α, β) = card (SemIS (α ∧ β)) ≥ t (31)

confidenceIS (α, β) =
supportIS (α, β)

card (SemIS (α))
≥ t′. (32)

Elementary granule inclusion in a given information system IS can be defined using different
schemes, e.g., by

νIS
t (α, β) if and only if accuracyIS(α, β) ≥ t. (33)

The closeness of granules can be defined by

clIS
t,t′ (α, β) if and only if νIS

t,t′ (α, β) and νIS
t,t′ (β, α) hold. (34)

Decision rules as granules. One can define inclusion and closeness of granules correspond-
ing to rules of the form if α then β using accuracy coefficients. Having such granules
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g = (α, β) , g′ = (α′, β′) one can define inclusion and closeness of g and g ′ by

νIS
t,t′ (g, g′) if and only if νIS

t,t′ (α, α′) and νIS
t,t′ (β, β ′) . (35)

The closeness can be defined by

clIS
t,t′ (g, g′) if and only if νIS

t,t′ (g, g′) and νIS
t,t′ (g

′, g) . (36)

Another way of defining inclusion of granules corresponding to decision rules is as follows

νIS
t ((α, β) , (α′, β′)) if and only if (37)

νIS
t1,t2

(α, α′) and νIS
t1,t2

(β, β ′) and t = w1 · t1 + w2 · t2

where w1, w2 are some given weights satisfying w1 + w2 = 1 and w1, w2 ≥ 0 .
Measures of closeness of rules are discussed in, e.g., [5, 52].

Extensions of elementary granules by tolerance relation. For extensions of elementary
granules defined by similarity (tolerance) relation, i.e., granules of the form (α, τ), (β, τ) one
can consider the following inclusion measure:

νIS
t,t′ ((α, τ) (β, τ)) if and only if (38)

νIS
t,t′ (α

′, β′) for any α′, β′ such that (α, α′) ∈ τ and (β, β ′) ∈ τ

and the following closeness measure:

clIS
t,t′ ((α, τ) (β, τ)) if and only if νIS

t,t′ ((α, τ) (β, τ)) and νIS
t,t′ ((β, τ) (α, τ)) . (39)

It can be important for some applications to define closeness of an elementary granule α and
the granule (α, τ) . The definition reflecting an intuition that α should be a representation of
(α, τ) sufficiently close to this granule is the following one:

clIS
t,t′ (α, (α, τ)) if and only if clIS

t,t′ (α, β) for any (α, β) ∈ τ. (40)

Sets of rules. An important problem related to association rules is that the number of such
rules generated even from simple data table can be large. Hence, one should search for meth-
ods of aggregating close association rules. We suggest that this can be defined as searching
for some close information granules.

Let us consider two finite sets Rule Set and Rule Set′ of association rules defined by

Rule Set = {(αi, βi) : i = 1, . . . , k} (41)

Rule Set′ = {(α′

i, β
′

i) : i = 1, . . . , k′} . (42)

One can treat them as higher order information granules. These new granules Rule Set,
Rule Set′ can be treated as close to a degree at least t (in IS) if and only if there exists a
relation rel between sets of rules Rule Set and Rule Set′ such that:

1. For any Rule ∈ Rule Set there is Rule′ ∈ Rule Set′ such that (Rule,Rule′) ∈ rel and
Rule is close to Rule′ (in IS) to degree at least t.
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2. For any Rule′ ∈ Rule Set′ there is Rule ∈ Rule Set such that (Rule,Rule′) ∈ rel and
Rule is close to Rule′ (in IS) to degree at least t.

Another way of defining closeness of two granules G1, G2 represented by sets of rules
can be described as follows.

Let us consider again two granules Rule Set and Rule Set′ corresponding to two deci-
sion algorithms. By I(β ′

i) we denote the set {j : clIS
p

(

β′

j, β
′

i

)

} for any i = 1, . . . , k′.
Now, we assume νIS

p (Rule Set, Rule Set′) if and only if for any i ∈ {1, . . . , k′} there
exists a set J ⊆ {1, . . . , k} such that

clIS
p







∨

j∈I(β′

i)

β′

j,
∨

j∈J

βj






and clIS

p







∨

j∈I(β′

i)

α′

j,
∨

j∈J

αj






(43)

and for closeness we assume

clIS
p (Rule Set, Rule Set′) if and only if (44)

νIS
p (Rule Set, Rule Set′) and νIS

p (Rule Set′, Rule Set) .

For example, if the granule G1 consists of rules: if α1 then d = 1, if α2 then d = 1, if α3

then d = 1, if β1 then d = 0, if β2 then d = 0 and the granule G2 consists of rules: if γ1

then d = 1, if γ2 then d = 0, then

clp (G1, G2) if and only if clp (α1 ∨ α2 ∨ α3, γ1) and clp (β1 ∨ β2, γ2) . (45)

One can consider a searching problem for a granule Rule Set′ of minimal size such that
Rule Set and Rule Set′ are close. Certainly, the above discussed example is only a simple
example of closeness measure between rule sets and for a given real-life application one
should induce relevant closeness measures.

Granules defined by sets of granules. The previously discussed methods of inclusion and
closeness definition can be easily adopted for the case of granules defined by sets of already
defined granules. Let G,H be sets of granules.

The inclusion of G in H can be defined by

νIS
t,t′ (G,H) if and only if for any g ∈ G there is h ∈ H for which ν IS

t,t′ (g, h) (46)

and the closeness by

clIS
t,t′ (G,H) if and only if νIS

t,t′ (G,H) and νIS
t,t′ (H,G) . (47)

Let G be a set of granules and let ϕ be a property of sets of granules from G (e.g., ϕ (X)
if and only if X is a tolerance class of a given tolerance τ ⊆ G × G). Then Pϕ (G) =
{X ⊆ G : ϕ (X) holds}. Closeness of granules X,Y ∈ Pϕ (G) can be defined by

clt (X,Y ) if and only if clt (g, g′) for any g ∈ X and g′ ∈ Y. (48)

We have the following examples of inclusion and closeness propagation rules:

for any α ∈ G there is α′ ∈ H such that νp(α, α′)

νp(G,H)
(49)
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clp(α, α′), clp(β, β ′)

clp((α, β), (α′, β′))
(50)

for any α′ ∈ τ(α) there is β ′ ∈ τ(β) s. t. νp(α
′, β′)

νp((τ : α), (τ : β))
(51)

clp(G,G′), clp(E,E ′)

clp((G,E), (G′, E ′))
(52)

where α, α′, β, β ′ are elementary granules, G,G′ are finite sets of elementary granules.
The exemplary rules have a general form, i.e., they are true in any IS (under the chosen

definition of inclusion and closeness). Some of them are derivable from others. We will see in
the next part of our chapter that there are also some operations of new granules construction
specific for a given information system. In this case one should extract inference rules from
given data.

Information granules defined by inclusion and closeness measures. Let us observe that
inclusion (closeness) measures can be used to define new granules being approximations
or generalizations of existing ones. Assume g, h are given information granules, and νp is
inclusion measure (where p ∈ [0, 1]). A (h, p)- approximation of g is an information granule
νh,p represented by a set {h′ : ν1(h

′, h)∧νp(h
′, g)}. Now the lower and upper approximations

of given information granules can be easily defined [43].

2.4 Rough–Fuzzy Granules

In this section, we will discuss briefly approximation schemes of granules and methods for
extracting from them relevant patterns in case when they include fuzzy concepts as foreign
parts. We propose to use rough set approach to define in a constructive way approximations of
fuzzy concepts [46, 47]. The rough set approximations of the fuzzy cuts are used in searching
for constructive definition of approximations of fuzzy sets. We use the cut approximations to
derive patterns relevant for the target concept approximation. In the process of searching for
high quality patterns evolutionary techniques can be used.

Let DT = (U,A, d) be a decision table with the decision being the restriction to the
objects from U of the fuzzy membership function µ : U → [0, 1]. Consider reals 0 < c1 <
. . . < ck where ci ∈ (0, 1] for i = 1, . . . , k. Any ci defines ci-cut by Xi = {x ∈ U : µ(x) ≥
ci}. Assume X0 = U,Xk+1 = Xk+2 = ∅.

A rough–fuzzy granule (rf–granule, for short) corresponding to (DT, c1, . . . , ck) is any
granule g = (g0, . . . , gk) such that for some B ⊆ A

SemB(gi) = (B(Xi − Xi+1), B(Xi − Xi+1)) for i = 0, . . . , k (53)

B(Xi − Xi+1) ⊆ (Xi−1 − Xi+2) for i = 1, . . . , k. (54)

Any function µ∗ : U → [0, 1] satisfying the following conditions:

µ∗(x) = 0 if x ∈ U − BX1 (55)

µ∗(x) = 1 if x ∈ BXk (56)

µ∗(x) = ci−1 if x ∈ B(Xi−1 − Xi) for i = 2, . . . , k − 1 (57)

ci−1 < µ∗(x) < ci if x ∈ (BXi − BXi) for i = 1, . . . , k and c0 = 0 (58)
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is called a B-approximation of µ.
Now one can choose of the lower or upper approximations of parts, i.e., the set theoretical

differences between successive cuts, and propagate them along the scheme in searching for
relevant patterns. Another strategy is to propagate the global approximation of foreign fuzzy
concepts through the scheme describing target concept.

This problem is of a great importance in classification of situations by autonomous sys-
tems on the basis of sensor measurements [56].

2.5 Classifiers as Information Granules

An important class of information granules create classifiers. One can observe that sets of
decision rules generated from a given decision table DT = (U,A, d) (see, e.g., [40] can be
interpreted as information granules. The classifier construction from DT can be described as
follows:

1. First, one can construct granules Gj corresponding to each particular decision j = 1, . . . , r
by taking a collection {gij : i = 1, . . . , kj} of left hand sides of decision rules for a given
decision.

2. Let E be a set of elementary granules (e.g., defined by conjunction of descriptors) over
IS = (U,A). We can now consider a granule denoted by

Match(e,G1, . . . , Gr) (59)

for any e ∈ E being a collection of coefficients εij where εij = 1 if the set of objects
defined by e in IS is included in the meaning of gij in IS, i.e., SemIS(e) ⊆ SemIS(gij);
and 0, otherwise. Hence, the coefficient εij is equal to 1 if and only if the granule e
matches in IS the granule gij.

3. Let us now denote by Conflict res an operation (resolving conflict between decision
rules recognizing elementary granules) defined on granules of the form

Match(e,G1, . . . , Gr)

with values in the set of possible decisions 1, . . . , r. Hence,

Conflict res(Match(e,G1, . . . , Gr)) (60)

is equal to the decision predicted by the classifier

Conflict res(Match(•, G1, . . . , Gr)) (61)

on the input granule e.

Hence, classifiers are special cases of information granules. Parameters to be tuned are
voting strategies, matching strategies of objects against rules as well as other parameters like
closeness of granules in the target granule.

The classifier construction is illustrated in Figure 4 where three sets of decision rules are
presented for the decision values 1, 2, 3, respectively. Hence, we have r = 3. In figure to
omit too many indices we write αi instead of gi1, βi instead of gi2, and γi instead of gi3,
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Figure 4: Classifiers as information granules

Figure 5: Rough neuron

respectively. Moreover, ε1, ε2, ε3, denote ε1,1, ε2,1, ε3,1; ε4, ε5, ε6, ε7 denote ε1,2, ε2,2, ε3,2, ε4,2;
and ε8, ε9 denote ε1,3, ε2,3, respectively.

The reader can now easily describe more complex classifiers by means of information
granules. For example, one can consider soft instead of crisp inclusion between elementary
information granules representing classified objects and the left hand sides of decision rules
or soft matching between recognized objects and left hand sides of decision rules.

Observe that any classifier realizes a kind of Make granule operation transforming col-
lections of granules into granules representing decisions.

3 Rough Neurocomputing: Weights Defined by Approximation Spaces

In this section, we will discuss the rough neurocomputing paradigm using model for infor-
mation granule construction introduced in [44, 45]. First we elaborate a general scheme for
information granule construction in distributed systems. Such schemes are parameterized, in
particular by local parameterized approximation spaces. These parameterized approximation
spaces can be treated as analogy to the neural network weights. The parameters should be
learned to induce the relevant information granules (see Figure 5).
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We use terminology from multi-agent area to explain the basic constructions [12].
Teams of agents are organized, e.g., along the schemes of decomposition of complex

objects (e.g., representing situations on the road) into trees. The trees are represented by
expressions called terms. Two granules are defined for any term t under a given valuation
val of leaf agents of t in the set of input granules. They are called the lower and upper
approximations of t under val.

The necessity to consider approximation of granule returned by a given term t under a
given valuation val rather than the exact value of t under val is a consequence of the ability
of agents to perceive in approximate sense only information granules received from other
agents. Hence, approximate reasoning in distributed environment requires a construction of
interfaces between agents (information sources or units) enabling effective learning by agents
of concepts definable by other agents. In the chapter, we suggest a solution based on exchang-
ing views of agents on objects with respect to a given concept. An agent delivering a concept
is submitting positive and negative examples (objects) with respect to a given concept. The
agent receiving this information describes objects using its own attributes. In this way a data
table (called a decision table) is created and the approximate description of concept can be
extracted by the receiving agent. Our solution is based on the rough set approach. We pro-
pose to use the parameterized approximation spaces to allow appropriate tuning of concept
perception by agents (see Figures 6 and 7).

Figure 6: Concept g1 – information granule of ag1 ∈ Ag (left) and communication interface defined by data
table (right)

Figure 7: Lower and upper approximation of g1 by ag ∈ Ag

One can consider different problems related to synthesis of AR-schemes defined by terms.
For example, one can look for a strategy returning for a given specification granule a term
t and its valuation val such that the granules defined by the lower and upper values of t
under val are sufficiently included in the soft specification granule. Moreover, one can require
these granules to be of high quality (e.g., supported by many objects) and the term t to be
robust with respect to the deviations of val, i.e., the lower and upper values of t under val ′
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sufficiently close to val to be included in the soft specification granule to a satisfactory degree.
Observe that such terms define pattern granules sufficiently included in the specification.
Moreover, a given object (situation) is covered by this pattern if the valuation defined by this
object is sufficiently close to val (see Figure 2).

We assume any non leaf-agent ag is equipped with an operation

o (ag) : U (1)
ag × . . . × U (k)

ag → U (0)
ag (62)

and has different approximation spaces

AS(i)
ag =

(

U (i)
ag , I(i)

ag , νSRI

)

where i = 0, . . . , k. (63)

We assume that the agent ag is perceiving objects by measuring values of some available
attributes. Hence, some objects can become indiscernible [27]. This influences the specifica-
tion of any operation o (ag) . We consider a case when arguments and values of operations
are represented by attribute value vectors. Hence, instead of the operation o (ag) we have
its inexact specification o∗ (ag) taking as arguments I

(1)
ag (x1) , . . . , I

(k)
ag (xk) for some x1 ∈

U
(1)
ag , . . . , xk ∈ U

(k)
ag and returning the value I

(0)
ag (o(ag)(x1, . . . , xk)) if o(ag)(x1, . . . , xk) is

defined, otherwise the empty set. This operation can be extended to the operation o∗(ag) with
arguments being definable sets (in approximation spaces attached to arguments) and with
values in the family of all non-empty subsets of U

(0)
ag . Let X1, . . . , Xk be definable sets. We

define

o∗ (ag) (X1, . . . , Xk) =
⋃

x1∈X1,...,xk∈Xk

o∗ (ag)
(

I(1)
ag (x1) , . . . , I (k)

ag (xk)
)

. (64)

In the sequel, for simplicity of notation, we write o (ag) instead of o∗ (ag) .
This idea can be formalized as follows. First we define terms representing agent schemes.
Let Xag, Yag, . . . be agent variables for any leaf-agent ag ∈ Ag. Let o (ag) denote a

function of arity k. We have mentioned that it is an operation from Cartesian product of

Def Sets(AS(1)
ag ), . . . , Def Sets(AS(k)

ag ) (65)

into P
(

U
(0)
ag

)

where Def Sets(AS
(i)
ag ) denotes the family of sets definable in AS

(i)
ag . Using

the above variables and functors we define terms in a standard way, for example

t = o (ag) (Xag1
, Xag2

) . (66)

Such terms can be treated as description of complex information granules. By a valuation
we mean any function val defined on the agent variables with values being definable sets
satisfying val(Xag) ⊆ Uag for any leaf-agent ag ∈ Ag. Now we can define the lower value

val
(

LOW,AS
(i)
ag

)

(t) and the upper value val
(

UPP,AS
(i)
ag

)

(t) of any term t under the

valuation val with respect to a given approximation space AS
(i)
ag of an agent ag.

1. If t is of the form Xagi
and val(t) ⊆ U

(i)
ag then

val
(

LOW,AS(i)
ag

)

(t) = LOW
(

AS(i)
ag , val(t)

)

(67)

val
(

UPP,AS(i)
ag

)

(t) = UPP
(

AS(i)
ag , val(t)

)

(68)



Approximate Reasoning in Distributed Environments 21

else the lower and the upper values are undefined;
where

LOW
(

AS(i)
ag , val(t)

)

and UPP
(

AS(i)
ag , val(t)

)

(69)

denotes the lower approximation and the upper approximation in AS
(i)
ag of the set val(t),

respectively.

2. If t = o(ag)(t1, . . . , tk), where t1, . . . , tk are terms and o (ag) is an operation of arity k,
then

(a) if val
(

LOW,AS
(i)
ag

)

(ti) is defined for i = 1, . . . , k

then

val
(

LOW,AS(0)
ag

)

(t) = (70)

LOW
(

AS(0)
ag , o (ag)

(

val
(

LOW,AS(1)
ag

)

(t1) , . . . , val
(

LOW,AS(k)
ag

)

(tk)
))

else val
(

LOW,AS
(0)
ag

)

(t) is undefined,

(b) if val
(

UPP,AS
(i)
ag

)

(ti) is defined for i = 1, . . . , k

then

val
(

UPP,AS(0)
ag

)

(t) = (71)

UPP
(

AS(0)
ag , o (ag)

(

val
(

UPP,AS(1)
ag

)

(t1) , . . . , val
(

UPP,AS(k)
ag

)

(tk)
))

else val
(

UPP,AS
(0)
ag

)

(t) is undefined.

For illustrative example of computation of the lower and upper approximations of terms the
reader is referred to [45].

Let us observe that the set

val(UPP,AS(0)
ag )(t) − val(LOW,AS(0)

ag )(t) (72)

can be treated as the boundary region of t under val. Moreover, in the process of term con-
struction we have additional parameters to be tuned for obtaining sufficiently high support
and accuracy, namely the approximation operations.

A concept X specified by the customer-agent is sufficiently close to t under a given set
V al of valuations if X is included in the upper approximation of t under any val ∈ V al
and X includes the lower approximation of t under any val ∈ V al as well as the size of the
boundary region of t under V al, i.e.,

card

(

⋂

val∈V al

val
(

UPP,AS(0)
ag

)

(t) −
⋃

val∈V al

val
(

LOW,AS(0)
ag

)

(t)

)

(73)

is sufficiently small relatively to

⋂

val∈V al

val
(

UPP,AS(0)
ag

)

(t). (74)
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4 Rough Neurocomputing: Rough Mereological Approach

We now present a conceptual scheme for an adaptive calculus of granules aimed at syn-
thesizing solutions to problems posed under uncertainty. This exposition is based on our
earlier analyzes presented in [32, 35, 37]. For recent developments the reader is referred to
[24, 25, 48]. We construct a scheme of agents which communicate by relating their respective
granules of knowledge by means of transfer functions induced by rough mereological con-
nectives extracted from their respective information systems. Such schemes can be treated
as AR-schemes. We assume the notation of [35] where the reader will find all the necessary
information.

In the previous section ideas concerning rough neurocomputing based on approximation
spaces have been discussed. Now we will present an approach to calculi of granules based
on rough mereological approach. We will concentrate on some ideas. The formal details of
rough mereology can be found, e.g., in [31, 36, 38].

We now define formally the ingredients of our scheme of agents.

4.1 Distributed Systems of Agents

We assume that a pair (Inv,Ag) is given where Inv is an inventory of elementary objects
and Ag is a set of intelligent computing units called shortly agents.

We consider an agent ag ∈ Ag. The agent ag is endowed with tools for reasoning about
objects in its scope; these tools are defined by components of the agent label. The label of the
agent ag is the tuple

lab(ag) = (A(ag),M(ag),L(ag), Link(ag), AP O(ag), St(ag), (75)

Unc rel(ag), H(ag), Unc rule(ag), Dec rule(ag))

where
1. A(ag) = (U(ag), A(ag)) is an information system of the agent ag; we assume as an

example that objects (i.e., elements of U(ag)) are granules of the form: (α, [α]) where α is a
conjunction of descriptors (one may have more complex granules as objects).

2. M(ag) = (U(ag), [0, 1], µo(ag)) is a pre - model of Lrm with a pre - rough inclusion
µo(ag) on the universe U(ag) [31].

3. L(ag) is a set of unary predicates (properties of objects) in a predicate calculus inter-
preted in the set U(ag); we may assume that formulae of L(ag) are constructed as conditional
formulae of logics LB where B ⊆ A(ag).

4. St(ag) = {st(ag)1, . . . , st(ag)n} ⊂ U(ag) is the set of standard objects at ag.
5. Link(ag) is a collection of strings of the form t = ag1ag2 . . . agkag; the intended

meaning of a string ag1ag2 . . . agkag is that ag1, ag2, .., agk are children of ag in the sense that
ag can assemble complex objects (constructs) from simpler objects sent by ag1, ag2, . . . , agk.
In general, we may assume that for some agents ag we may have more than one element in
Link(ag) which represents the possibility of re - negotiating the synthesis scheme.

We denote by the symbol Link the union of the family {Link(ag) : ag ∈ Ag}.
6. AP O(ag) consists of pairs of the form:

(o(ag, t), ((AS1(o(ag), in), · · · , ASn(o(ag), in)), AS(o(ag), out)) (76)
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where o(ag, t) ∈ O(ag), n is the arity of o(ag, t), t = ag1ag2 . . . agkag ∈ Link,
ASi(o(ag, t), in) is a parameterized approximation space [44] corresponding to the i − th
argument of o(ag, t) and AS(o(ag, t), out) is a parameterized approximation space [44] for
the output of o(ag, t).

O(ag) is the set of operations at ag; any o(ag, t) ∈ O(ag) is a mapping of the Carte-
sian product U(ag)× U(ag)× . . .× U(ag) into the universe U(ag); the meaning of o(ag, t)
is that of an operation by means of which the agent ag is able to assemble from objects
x1 ∈ U(ag1), x2 ∈ U(ag2), . . . , xk ∈ U(agk) the object z ∈ U(ag) which is an approxima-
tion defined by AS(o(ag, t), out) to o(ag, t)(y1, y2, . . . , yk) ∈ U(ag) where yi is the approx-
imation to xi defined by ASi(o(ag, t), in). One may choose here either a lower or an upper
approximation.

7. Unc rel(ag) is the set of uncertainty relations unc reli of type

(oi(ag, t), ρi(ag), ag1, . . . , agk, ag, (77)

µo(ag1), µo(agk), µo(ag),st(ag1)i, . . . , st(agk)i, st(ag)i)

where t = ag1ag2 . . . agkag ∈ Link(ag), oi(ag, t) ∈ O(ag) and ρi is such that

ρi((x1, ε1), (x2, ε2), ., (xk, εk), (x, ε)) (78)

holds for x1 ∈ U(ag1), x2 ∈ U(ag2), .., xk ∈ U(agk) and ε, ε1, ε2, .., εk ∈ [0, 1] if and only if
µo(x, st(ag)i) ≥ εj, and µo(xj, st(agj)i) ≥ εj for j = 1, 2, .., k for the collection of standards
st(ag1)i, st(ag2)i, .. ., st(agk)i, st(ag)i such that

oi(ag, t)(st(ag1)i, st(ag2)i, .., st(agk)i) = st(ag)i. (79)

The operation o performed by ag here is more complex then that of [35] as it is composed of
three stages: first, approximations to input objects are constructed, next the operation is per-
formed, and finally the approximation to the result is constructed. Relations unc reli provide
a global description of this process; in reality, they are composition of analogous relations
corresponding to the three stages. As a result, unc reli depend on parameters of approxima-
tion spaces. This concerns also other constructs discussed here. It follows that in order to
get satisfactory decomposition (similarly, uncertainty and so on) rules one has to search for
satisfactory parameters of approximation spaces (this is in analogy to weight tuning in neural
computations).

Uncertainty relations express the agents knowledge about relationships among uncer-
tainty coefficients of the agent ag and uncertainty coefficients of its children. The relational
character of these dependencies expresses their intensionality.

8. Unc rule(ag) is the set of uncertainty rules unc rulej of type

(oj(ag, t), fj,ag1, ag2, . . . , agk, ag, (80)

st(ag1), st(ag2), . . . , st(agk), st(ag),

µo(ag1), . . . , µo(agk), µo(ag))

of the agent ag where t = ag1ag2 . . . agkag ∈ Link(ag) and fj : [0, 1]k −→ [0, 1] is a
function which has the property that for any x1 ∈ U(ag1), x2 ∈ U(ag2), . . . , xk ∈ U(agk)

if oj(ag, t)(st(ag1), st(ag2), . . . , st(agk)) = st(ag) and (81)

µo(xi, st(agi)) ≥ ε(agi) for i = 1, 2, . . . , k

then µo(oj(ag, t)(x1, x2, . . . , xk), st(ag)) ≥ fj(ε(ag1), ε(ag2), . . . , ε(agk)).
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Figure 8: Uncertainty rules

In Figure 8 the idea of uncertainty rules is illustrated. Uncertainty rules provide functional
operators, called rough mereological connectives, for propagating uncertainty measure values
from the children of an agent to the agent; their application is in negotiation processes where
they inform agents about plausible uncertainty bounds.

9. H(ag) is a strategy which produces uncertainty rules from uncertainty relations; to this
end, various rigorous formulas as well as various heuristics can be applied among them the
algorithm presented in Section 2.8 of [35].

10. Dec rule(ag) is a set of decomposition rules dec rulei of type

(oi(ag, t), ag1, ag2, . . . , agk, ag) (82)

such that
(Φ(ag1), Φ(ag2), .., Φ(agk), Φ(ag)) ∈ dec rulei (83)

where

Φ(ag1) ∈ L(ag1), Φ(ag2) ∈ L(ag2), . . . , Φ(agk) ∈ L(agk), Φ(ag) ∈ L(ag) (84)

t = ag1ag2 . . . agkag ∈ Link(ag) (85)

and there exists a collection of standards st(ag1), st(ag2), . . . , st(agk), st(ag) with the prop-
erties that oj(ag, t)(st(ag1), st(ag2), .., st(agk)) = st(ag), st(agi) satisfies Φ(agi) for i =
1, 2, .., k and st(ag) satisfies Φ(ag).

Decomposition rules are decomposition schemes in the sense that they describe the stan-
dard st(ag) and the standards st(ag1), . . . , st(agk) from which the standard st(ag) is assem-
bled under oi in terms of predicates which these standards satisfy.
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We may sum up the content of (1) - (10) above by saying that for any agent ag the
possible sets of children of this agent are specified and, relative to each team of children,
decompositions of standard objects at ag into sets of standard objects at the children, uncer-
tainty relations as well as uncertainty rules, which relate similarity degrees of objects at the
children to their respective standards and similarity degree of the object built by ag to the
corresponding standard object at ag, are given.

We take rough inclusions of agents as measures of uncertainty in their respective uni-
verses. We would like to observe that the mereological relation of being a part is not transitive
globally over the whole synthesis scheme because distinct agents use distinct mereological
languages.

4.2 Approximate Synthesis of Complex Objects

The process of synthesis of a complex object (signal, action) by the above defined scheme
of agents consists in our approach of the two communication stages viz. the top - down
communication/negotiation process and the bottom - up communication/assembling process.
We outline the AR-scheme construction in the language of approximate formulae.

For simplicity of exposition and to avoid unnecessarily tedious notation, we assume
that the relation ag′ ≤ ag, which holds for agents ag′, ag ∈ Ag iff there exists a string
ag1ag2 . . . agkag ∈ Link(ag) with ag′ = agi for some i ≤ k, orders the set Ag into a tree.
We also assume that O(ag) = {o(ag, t)} for ag ∈ Ag, i.e., each agent has a unique assem-
bling operation for a unique t.

To this end we build a logic L(Ag) [35] in which we can express global properties of
the synthesis process. We recall our assumption that the set Ag is ordered into a tree by the
relation ag′ ≤ ag.

Elementary formulae of L(Ag) are of the form 〈st(ag), Φ(ag), ε(ag)〉 where st(ag) ∈
St(ag), Φ(ag) ∈ L(ag), ε(ag) ∈ [0, 1] for any ag ∈ Ag. Formulae of L(ag) form the smallest
extension of the set of elementary formulae closed under propositional connectives ∨, ∧, ¬
and under the modal operators [ ], <> .

To introduce a semantics for the logic L(ag), we first specify the meaning of satisfaction
for elementary formulae. The meaning of a formula Φ(ag) is defined classically as the set
[Φ(ag)] = {u ∈ U(ag) : u has the property Φ(ag)}; we will denote the fact that u ∈ [Φ(ag)]
by the symbol u |= Φ(ag). We extend now the satisfiability predicate |= to approximate for-
mulae: for x ∈ U(ag), we say that x satisfies an elementary formula 〈st(ag), Φ(ag), ε(ag)〉,
in symbols: x |=< st(ag), Φ(ag), ε(ag) >, iff

st(ag) |= Φ(ag) and µo(ag)(x, st(ag)) ≥ ε(ag). (86)

We let

x |= ¬〈st(ag), Φ(ag), ε(ag)〉 iff it is not true that x |= 〈st(ag), Φ(ag), ε(ag)〉 (87)

x |= 〈st(ag)1, Φ(ag)1, ε(ag)1〉 ∨ 〈st(ag)2, Φ(ag)2, ε(ag)2〉 iff (88)

x |= 〈st(ag)1, Φ(ag)1, ε(ag)1〉 or x |= 〈st(ag)2, Φ(ag)2, ε(ag)2〉.

In order to extend the semantics over modalities, we first introduce the notion of a selection:
by a selection over Ag we mean a function sel which assigns to each agent ag an object
sel(ag) ∈ U(ag).
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For two selections sel, sel′ (i.e., sel, sel′ : Ag →
⋃

Uag and sel(ag), sel′(ag) ∈ Uag for
any ag ∈ Ag) we say that sel induces sel′, in symbols sel →Ag sel′ when

sel(ag) = sel′(ag) for any ag ∈ Leaf(Ag) and (89)

sel′(ag) = o(ag, t)(sel′(ag1), sel
′(ag2), . . . , sel

′(agk)) for any t = ag1ag2 . . . agkag ∈ Link.

We extend the satisfiability predicate |= to selections: for an elementary formula 〈st(ag),
Φ(ag), ε(ag)〉, we let

sel |= 〈st(ag), Φ(ag), ε(ag)〉 iff sel(ag) |= 〈st(ag), Φ(ag), ε(ag)〉. (90)

We now let sel |=<>< st(ag), Φ(ag), ε(ag) > when there exists a selection sel ′ satisfying
the conditions:

sel →Ag sel′ (91)

sel′ |= 〈st(ag), Φ(ag), ε(ag)〉. (92)

In terms of logic L(Ag) it is possible to express the problem of synthesis of an approximate
solution to the problem posed to the team Ag. We denote by head(Ag) the root of the tree
(Ag,≤).

In the process of top - down communication, a requirement Ψ received by the scheme
from an external source (which may be called a customer) is decomposed into approximate
specifications of the form 〈st(ag), Φ(ag), ε(ag)〉 for any agent ag of the scheme. The decom-
position process is initiated at the agent head(Ag) and propagated down the tree.

We are able now to formulate the synthesis problem.
Synthesis problem

Given a formula

α : 〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉 (93)

find a selection sel over the tree (Ag,≤) with the property sel |=<> α.
A solution to the synthesis problem with a given formula

〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉 (94)

is found by negotiations among the agents. Negotiations are based on uncertainty rules of
agents and their successful result can be expressed by a top-down recursion in tree (Ag,≤) as
follows: given a local team ag1ag2 . . . agkag with the formula 〈st(ag), Φ(ag), ε(ag)〉 already
chosen in negotiations on a higher tree level, it is sufficient that each agent agi choose a
standard st(agi) ∈ U(agi), a formula Φ(agi) ∈ L(agi) and a coefficient ε(agi) ∈ [0, 1] such
that

(Φ(ag1), Φ(ag2), . . . , Φ(agk), Φ(ag)) ∈ Dec rule(ag) (95)

with standards st(ag), st(ag1), . .., st(agk);

f(ε(ag1), . . . , ε(agk)) ≥ ε(ag) (96)

where f satisfies unc rule(ag) with st(ag), st(ag1), . . . , st(agk) and ε(ag1), . . . , ε(agk),
ε(ag).
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For a formula

α : 〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉 (97)

we call an α - scheme an assignment of a formula α(ag) : 〈st(ag), Φ(ag), ε(ag)〉 to each
ag ∈ Ag in such manner that formulas (95) and (96) above are satisfied and α(head(Ag)) is

〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉. (98)

We denote this scheme with the symbol

sch(〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉). (99)

We say that a selection sel is compatible with a scheme

sch(〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉) (100)

when µo(ag, t)(sel(ag), st(ag)) ≥ ε(ag) for each leaf agent ag ∈ Ag where

〈st(ag), Φ(ag), ε(ag)〉 (101)

is the value of the scheme at ag for any leaf ag ∈ Ag.
Any leaf agent realizes its approximate specification by choosing in the subset Inv ∩

U(ag) of the inventory of primitive constructs a construct satisfying the specification.
The goal of negotiations can be summarized now as follows.

Proposition 1. (Sufficiency Criterion) For a given a requirement

〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉 (102)

we have:
if a selection sel is compatible with a scheme

sch(〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉) (103)

then
sel |=<> 〈st(head(Ag)), Φ(head(Ag)), ε(head(Ag))〉. (104)

The bottom-up communication consists of agents sending to their parents the chosen con-
structs. The root agent root(Ag) assembles the final construct.

There is a parallelism between the proposed calculi of granules in distributed systems and
neural computing. Let us point to some analogies [36, 38].

1. Any elementary team of agents may be regarded as a model of a neuron with inputs sup-
plied by agents ag1, ag2, . . . , agk, the output returned by ag, and a parameterized family
of activation functions represented as rough mereological connectives.

2. Values of rough inclusions are counterparts of weights in a traditional neural network.
Let us observe that in our case the resulting network is a parameterized system of simple
networks, indexed by synthesis schemes.
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3. Learning in this new kind of a neural network is based also on back-propagation mecha-
nisms in which the incoming signal (a customer specification) is assigned a proper scheme
and a proper set of weights is set in negotiation and cooperation processes among local
teams and agents therein.

These processes of learning would require new algorithms and one possible way out here
is to base the process of learning on familiar techniques of neural networks by encoding
all the constructs in a neural network whose activation functions are tractable (e.g., piece–
wise differentiable) approximations to rough mereological connectives. As a result, we would
obtain a closed–loop system providing feedback information from the distributed system to
the neural network. The theory and practice of such systems is to come in future.

5 Extracting of AR-Schemes from Data and Background Knowledge

In this section, we present some methods of information granule decomposition aimed at
extracting from data decomposition rules. We restrict our considerations to methods based
only on experimental data. This approach can be extended to the case of information granule
decomposition methods using background knowledge [46, 47].

The search methods discussed in this section return local granule decomposition schemes.
These local schemes can be composed using techniques discussed in the previous section.
The received schemes of granule construction (which can be also treated as AR-schemes)
have also the following property: if the input granules are sufficiently close to input concepts
(standards) then the output granule is sufficiently included in the target concept (standard)
provided this property is preserved locally (see Proposition 1 in Section 4.2 and [35]).

The above may be formulated in terms of a synthesis grammar [38] with productions cor-
responding to the local decomposition rules. The relevant derivations over a given synthesis
grammar represent AR-schemes. Let us note that synthesis grammars reflect processes in
multi-agent systems which arise in a multi-agent system involved in cooperation, negotiation
and conflict–resolving actions when attempting to provide a solution to a specification of a
problem posed to its root. Complexities of membership problems for languages generated by
synthesis grammars may be taken ex definitione as complexities of the underlying synthesis
processes.

5.1 Granule Decomposition

In this section, we show that in some cases decomposition can be performed using methods
for specific rule generation based on Boolean reasoning [14]. Moreover, we present how the
decomposition stable with respect to information granule deviations can be obtained.

First, the representation problem for operations on information granules will be discussed.
We assume, any (partial) operation f : G1 × . . . × Gk → H with arguments from the
sets G1, . . . , Gk of information granules and values in the set H of information granules is
partially specified by a data table (information system) [27]. In Figure 9 R denotes constraints
specifying the domain of f, i.e., arguments of f are composable by means of f if and only if
they satisfy constraints from R.

Any row in the data table corresponds to an object being a tuple (g1, . . . , gk, f(g1, . . . , gk)),
where (g1, . . . , gk) belongs to the domain of f. The attribute values for a given object consist
of
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1. values of attributes from sets AG1
, . . . , AGk

on information granules g1, . . . , gk (attributes
are extracted from some preassumed feature languages L1, , . . . , Lk);

2. values of attributes characterizing relations between information granules g1, . . . , gk spec-
ifying conditions under which the tuple (g1, . . . , gk) belongs to a relevant part of the do-
main of f ;

3. values of attributes selected for the information granule f(g1, . . . , gk) description.

In this way, partial information about the function f is given. In our considerations, we
assume objects indiscernible by condition attributes are indiscernible by decision attribute,
i.e., the considered decision table DT = (U,A, d) is consistent [27]. We assume also the
representation is consistent with a given function on information granules, i.e., any image ob-
tained by f of the Cartesian product of indiscernibility classes defined by condition attributes
is included in a decision indiscernibility class.

Now we explain in what sense the decision table DT = (U,A, d) can be treated as a
partial information about the function f : G1 × . . . × Gk → H. Let for i = 1, . . . , k

GDT
i = {gi ∈ Gi : there exists in DT an object (g1, . . . , gi, . . . , gk, h)}.

One can define HDT in an analogous way. The decision table DT defines a function

fDT : G1/IND(AG1
) × . . . × Gk/IND(AGk

) → HDT /IND(d) (105)

by

fDT ([g1]IND(AG1
), . . . , [gk]IND(AGk

)) = [h]IND(d) iff (g1, . . . , gk, h) is an object of DT.
(106)

We assume a consistency modeling condition for f is satisfied, namely

f([g1]IND(AG1
) × . . . × [gk]IND(AGk

)) = fDT ([g1]IND(AG1
), . . . , [gk]IND(AGk

)) (107)

for any (g1, . . . , gk) ∈ GDT
1 × . . . × GDT

k .
The function description can be induced from such a data table by interpreting it as a

decision table with the decision corresponding to the attributes specifying the values of the
function f.

We assume a family of inclusion relations ν i
p ⊆ Gi × Gi, νH

p ⊆ H × H and a family of
closeness relation cl1p, . . . , cl

k
p , cl

H
p for every p ∈ [0, 1] and i = 1, . . . , k are given [35]. Let us

assume two thresholds t, p are given. We define a relation QDT
t,p (Pattern1, . . . , Patternk, v)

between granules called patterns Pattern1, . . . , Patternk from pattern languages L1, . . . , Lk

for arguments of f and the target pattern v representing the decision value vector in the
following way:

QDT
t,p (Pattern1, . . . , Patternk, v) (108)

if and only if the following two conditions are satisfied

νH
p (f(SemDT (Pattern1) × . . . × SemDT (Patternk)), [v]IND(d)) (109)

card(SemDT (Pattern1) × . . . × SemDT (Patternk)) ≥ t. (110)
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Figure 9: Decomposition of information granule

Let us now consider the following decomposition problem:

Granule decomposition problem
Input:

• two thresholds t, p;

• pattern languages L1, . . . , Lk;

• a decision table DT = (U,A, d) representing an operation f : G1× . . .×Gk → H where
G1, . . . , Gk and H are given sets of information granules;

• a fixed decision value vector v represented by a value vector of decision attributes.

Output:

• a tuple (Pattern1, . . . , Patternk) ∈ L1 × . . . × Lk of patterns such that

QDT
t,p (Pattern1, . . . , Patternk, v). (111)

We consider a description given by means of decision rules extracted from the data table
specifying the function f. Any left hand side of decision rule can be divided into parts cor-
responding to different arguments of the function f. The i-th part, denoted by Patterni, is
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specifying a condition which should be satisfied by the i-th argument of f to obtain the func-
tion value specified by the decision attributes. For simplicity of considerations we do not
consider conditions specifying the relations between arguments. In this way the left hand
sides of decision rules describe patterns Patterni. The semantics of extracted patterns rel-
evant for the target can be defined as the image with respect to f of the Cartesian product
of sets SemDT (Patterni), i.e., by f(SemDT (Pattern1) × . . . × SemDT (Patternk)) (see
Figure 9).

One can use one of the methods for decision rule generation, e.g., for generation of min-
imal rules or their approximations (e.g., in the form of association rules) [14] to obtain such
decision rules.

In the former case we receive the most general patterns for function arguments consistent
with a given decision table, i.e., the information granules constructed by means of the func-
tion f from patterns extracted for arguments are included exactly in the information granule
represented by a given decision value vector in the data table (see Figure 9).

In the latter case, we obtain more general patterns for function arguments having the
following property: information granules constructed by means of f from such patterns will
be included to a satisfactory degree in the information granule represented by a given decision
value vector in the data table (see Figure 9).

One of the very important properties of the above discussed operations on information
granules is their robustness with respect to the deviations of arguments (see, e.g., [38]). This
property can be formulated as follows: if information granule constructed by means of f
from the extracted patterns Pattern1, . . . , Patternk is satisfying the target condition then
the information granule constructed from patterns Pattern′

1, . . . , Pattern′

k sufficiently close
to Pattern1, . . . , Patternk, respectively, is satisfying the target condition too. In this way
we obtain the following problem:

Robust decomposition problem (RD-problem)
Input:

• thresholds t, p;

• pattern languages L1, . . . , Lk;

• a decision table DT = (U,A, d) representing an operation f : G1× . . .×Gk → H where
G1, . . . , Gk and H are given sets of information granules;

• a fixed decision value vector v represented by a value vector of decision attributes.

Output:

• a tuple (p1, . . . , pk) of parameters;

• a tuple (Pattern1, . . . , Patternk) ∈ L1 × . . . × Lk of patterns such that

QDT
t,p (Pattern′

1, . . . , Pattern′

k, v) (112)

if clipi
(SemDT (Patterni), SemDT (Pattern′

i)) for i = 1, . . . , k.
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It is possible to search for the solution of the RD-problem by modifying the previous ap-
proach of decision rule generation. In the process of rule generation one can impose a stronger
discernibility condition by assuming objects to be discernible if their tolerance classes are dis-
joint. Certainly, one can tune parameters of tolerance relations to obtain rules of satisfactory
quality. We would like to stress that efficient heuristics for solving these problems can be
based on Boolean reasoning [14].

Searching for relevant patterns for information granule decomposition can be based on
methods for tuning parameters of rough set approximations of fuzzy cuts or concepts defined
by differences between cuts (see Section 2.4). In this case pattern languages consist of pa-
rameterized expressions describing the rough set approximations of parts of fuzzy concepts
being fuzzy cuts or differences between cuts. Hence, an interesting research direction related
to the development of new hybrid rough-fuzzy methods arises aiming at developing algorith-
mic methods for rough set approximations of such parts of fuzzy sets relevant for information
granule decomposition.

An approach presented in this section can be extended on the case of local granule de-
composition based on background knowledge [46, 47].

Conclusions

We have outlined a general scheme for rough neuro–computation based on knowledge gran-
ulation ideas using rough mereological tools. An important practical problem is a construc-
tion of such schemes (networks) for rough neurocomputing and of algorithms for parameter
tuning. We now foresee two possible approaches: the one in which we would rely on new,
original decomposition, synthesis and tuning methods in analogy to [35] but in the presence
of approximation spaces; the second, in which a rough neurocomputing scheme would be
encoded by a neural network in such a way that optimization of weights in the neural net
leads to satisfactory solutions for the rough neurocomputing scheme (cf. [9] for an attempt in
this direction).

We have also discussed an approach for extracting relevant patterns from parameterized
schemes of information granule construction consisting of parts from different information
sources. The schemes can be also treated as AR-schemes built on the basis of perception by
means of information granule calculi. Relevant output patterns (information granules) can
be obtained by tuning of the AR-scheme parameters. We have emphasized the necessity of
approximation (in an accessible language) of information granules being parts of schemes
and expressed in another language called foreign language.

Several research directions are related to the discussed AR-schemes and rough neural
networks. We enclose a list of such directions together with examples of problems.

1. Developing foundations for information granule systems. Certainly, still more work is
needed to develop solid foundations for synthesis and analysis of information granule
systems. In particular, methods for construction of hierarchical information granule sys-
tems, and methods for representation of such systems should be developed.

2. Algorithmic methods for inducing parameterized productions. Some methods have al-
ready been reported such as discovery of rough mereological connectives from data (see,
e.g., [32]) or methods based on decomposition (see, e.g., [33, 40, 46, 30]). However, these
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are only initial steps toward algorithmic methods for inducing of parameterized produc-
tions from data. One interesting problem is to determine how such productions can be
extracted from data and background knowledge.

3. Algorithmic methods for synthesis of AR-schemes. It was observed (see, e.g., [33, 37])
that problems of negotiations and conflict resolutions are of great importance for syn-
thesis of AR-schemes. The problem arises, e.g., when we are searching in a given set
of agents for a granule sufficiently included or close to a given one. These agents, often
working with different systems of information granules, can derive different granules and
their fusion will be necessary to obtain the relevant output granule. In the fusion process,
the negotiations and conflict resolutions are necessary. Much more work should be done
in this direction by using the existing results on negotiations and conflict resolution. In
particular, Boolean reasoning methods seem to be promising [33]. Another problem is
related to the size of production sets. These sets can be of large size and it is important
to develop learning methods for extracting small candidate production sets in the process
of extension of temporary derivations out of huge production sets. For solving this kind
o problems methods for clustering of productions should be developed to reduce the size
of production sets. Moreover, dialog and cooperation strategies between agents can help
to reduce the search space for necessary extension of temporary derivations.

4. Algorithmic methods for learning in rough neural networks. A basic problem in rough
neural networks is related to selecting relevant approximation spaces and to parameter
tuning. One can also look up to what extent the existing methods for classical neural
methods can be used for learning in rough neural networks. However, it seems that new
approach and methods for learning of rough neural networks should be developed to deal
with real-life applications. In particular, it is due to the fact that high quality approxima-
tions of concepts can be often obtained only through dialog and negotiations processes
among agents in which gradually the concept approximation is constructed. Hence, for
rough neural networks learning methods based on dialog, negotiations and conflict reso-
lutions should be developed. In some cases, one can use directly rough set and Boolean
reasoning methods (see, e.g., [45]). However, more advanced cases need new methods.
In particular, hybrid methods based on rough and fuzzy approaches can bring new results
[22].

5. Fusion methods in rough neural neurons. A basic problem in rough neurons is fusion
of the inputs (information) derived from information granules. This fusion makes it pos-
sible to contribute to the construction of new granules. In the case where the granule
constructed by a rough neuron consists of characteristic signal values made by relevant
sensors, a step in the direction of solving the fusion problem can be found in [28].

6. Adaptive methods. Certainly, adaptive methods for discovery of productions, for learning
of AR-schemes and rough neural networks should be developed [15].

7. Discovery of multi-agent systems relevant for given problems. Quite often, the agents and
communication methods among them are not given a priori with the problem specification
and a challenge is to develop methods for discovery of relevant for given problems multi-
agent system structures, in particular methods for discovery of relevant communication
protocols.
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8. Construction of multi-agent systems for complex real-life problems. The challenging prob-
lems are related to applying the discussed methodology to real life problems like control
of autonomous systems (see, e.g., www page of WITAS project [56]), Web mining prob-
lems (see, e.g., [13, 40], sensor fusion (see, e.g., [3, 29, 28]) or spatial reasoning (see, e.g.,
[7, 6]).

9. Evolutionary methods. For all of the above methods it is necessary to develop evolutionary
searching methods for (semi-) optimal solutions [15].

10. Parallel algorithms. The discussed problems are of high computational complexity. Paral-
lel algorithms searching for AR-schemes and methods for their hardware implementation
belong to one important research directions. Moreover, reasoning based on synthesis of
AR-schemes using DNA-computing [26] or quantum computing [21] should be devel-
oped.
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