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Abstract. This paper considers the problem of approximate reasoning
in the context of approximation spaces. Zdzis law Pawlak introduced Ap-
proximation spaces in his seminal work on rough sets more than two
decades ago. In this paper, we show that approximation spaces are ba-
sic structures for machine learning and pattern recognition. The utility
of approximation spaces as fundamental objects constructed for con-
cept approximation is emphasized. Examples of basic concepts are given
throughout this paper to illustrate how approximation spaces can be
beneficially used in many settings. The contribution of this paper is the
presentation of an approximation space-based framework for doing re-
search in various forms of learning, especially reinforcement learning in
non-stationary environments as well as hierarchical learning in distrib-
uted environments.
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1 Introduction

Approximation spaces are fundamental structures for the rough set approach
[17, 18, 39]. In this paper we present a generalization of the original approxima-
tion space model. Using such approximation spaces we show how the rough set
approach can be used for approximation of concepts assuming that only partial



information on approximation spaces is available. Hence, searching for concept
approximation, i.e., the basic task in machine learning and pattern recognition
can be formulated as searching for relevant approximation spaces. In the paper
we also characterize the operations on approximation spaces, called constrained
sums, that are used in searching for complex concept approximation. We also
discuss an important role of constrained sums in hierarchical modelling and in
approximate reasoning. The constrained sums are generic operations for approx-
imate reasoning in distributed environments and in multiagent systems.

Our approach is also related to the perception based computing. Studying
cognition and in particular, perception based computing [1, 2, 9, 10, 8, 13–15, 46]
is becoming now one of the very active research direction for methods of complex
concept approximation [5, 4, 16, 23, 19, 48] and in the consequence for building
intelligent systems.

The paper is organized as follows. In Section 2 we recall the definition of
approximation spaces. Next, we describe a constructive approach for computing
values of uncertainty and rough inclusion functions. These functions are the basic
components of approximation spaces. Parameters of the uncertainty and rough
inclusion functions are tuned in searching for relevant approximation spaces. We
distinguish among such parameters sensory environments and their extensions.
These parameters are used for constrictive definition of uncertainty and rough
inclusion functions. In particular, we show how information systems can be de-
fined from such approximation spaces. We recall the basic definitions of concept
approximation using the approximation spaces. The presented examples of ap-
proximation spaces are showing that the discussed approach generalizes several
known approaches to approximation in rough set theory. Next, in Section 3 we
discuss the problem of concept approximation under assumption that only a par-
tial information about approximation spaces is available. In this case to decide
if a given object belongs to the upper or lower approximation of a given concept
it is necessary to estimate the exact value of the rough inclusion function for the
neighborhood of this object and the approximated concept because the exact
value may be not available. We present an illustrative example for such estima-
tion following a well known heuristic used for rule based classifier construction.
In this way, we are showing that searching for relevant approximation spaces
is closely related to the basic task of classifier construction in machine learn-
ing and in pattern recognition. Searching methods for relevant approximation
spaces for complex concept approximation are important in hierarchical learn-
ing and in approximate reasoning, in particular in distributed environments and
multiagent systems. The search space is equal to the set generated from some
generic approximation spaces and some special operations on approximation
spaces that we call constrained sums. We discuss applications of such spaces for
complex concept approximation using hierarchical learning, approximation of
vague dependencies and ontology approximation. Section 4 considers operations
on approximation spaces, and Section 5 describes an approach to reinforcement
learning using approximation spaces.



2 Approximation Spaces

In this section we recall the definition of an approximation space from [32, 42].

Definition 1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where

– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function, where P (U) denotes the power

set of U ,
– ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does
not lead to misunderstanding.

2.1 Uncertainty function

The uncertainty function defines for every object x, a set of objects described
similarly to x. The set I(x) is called the neighborhood of x (see, e.g., [18, 32]).

We assume that the values of the uncertainty function are defined using a
sensory environment, i.e., a pair (L, ‖ · ‖U ), where L is a set of formulas, called
the sensory formulas, and ‖ · ‖U : L −→ P (U) is the sensory semantics. We
assume that for any sensory formula α and any object x ∈ U the information if
x ∈ ‖α‖U holds is available. The set {α : x ∈ ‖α‖U} is called the signature of x in
AS and is denoted by InfAS(x). For any x ∈ U the set NAS(x) of neighborhoods
of x in AS is defined by {‖α‖U : x ∈ ‖α‖U} and from this set the neighborhood
I(x) is constructed. For example, I(x) is defined by selecting an element from
the set {‖α‖U : x ∈ ‖α‖U} or by I(x) =

⋂

NAS(x). Observe that any sensory
environment (L, ‖ · ‖U ) can be treated as a parameter of I from the vector #
(see Definition 1).

Let us consider two examples. Any decision table DT = (U,A, d) [18] defines
an approximation space ASDT = (U, IA, νSRI), where, as we will see, IA(x) =
{y ∈ U : a(y) = a(x) for all a ∈ A}. Any sensory formula is a descriptor, i.e., a
formula of the form a = v where a ∈ A and v ∈ Va with the standard semantics
‖a = v‖U = {x ∈ U : a(x) = v}. Then, for any x ∈ U its signature InfASDT

(x) is
equal to {a = a(x) : a ∈ A} and the neighborhood IA(x) is equal to

⋂

NASDT
(x).

Another example can be obtained assuming that for any a ∈ A there is given
a tolerance relation τa ⊆ Va × Va (see, e.g., [32]). Let τ = {τa}a∈A. Then,
one can consider a tolerance decision table DTτ = (U,A, d, τ) with tolerance
descriptors a =τa

v and their semantics ‖a =τa
v‖U = {x ∈ U : vτaa(x)}. Any

such tolerance decision table DTτ = (U,A, d, τ) defines the approximation space
ASDTτ

= (U, IA, νSRI) with the signature InfASDTτ
(x) = {a =τa

a(x) : a ∈ A}
and the neighborhood IA(x) =

⋂

NASDTτ
(x) for any x ∈ U .

The fusion of NASDTτ
(x) for computing the neighborhood of x can have many

different forms; the intersection is only an example. One can also consider some
more general uncertainty functions, e.g., with values in P 2(U) [39]. For example,
to compute the value of I(x) first some subfamilies of NAS(x) can be selected



and next the family consisting of intersection of each such a subfamily is taken
as the value of I(x).

Note, that any sensory environment (L, ‖ · ‖U ) defines an information system
with the universe U of objects. Any row of such an information system for an
object x consists of information if x ∈ ‖α‖U holds, for any sensory formula
α. Let us also observe that in our examples we have used a simple sensory
language defined by descriptors of the form a = v. One can consider a more
general approach by taking, instead of the simple structure (Va, =), some other
relational structures Ra with the carrier Va for a ∈ A and a signature τ . Then
any formula (with one free variable) from a sensory language with the signature
τ that is interpreted in Ra defines a subset V ⊆ Va and induces on the universe
of objects a neighborhood consisting of all objects having values of the attribute
a in the set V . Note, that this is the basic step in hierarchical modelling [38].

2.2 Rough inclusion function

One can consider general constraints which the rough inclusion functions should
satisfy. Searching for such constraints initiated investigations resulting in cre-
ation and development of rough mereology (see, e.g., [27, 26] and the bibliogra-
phy in [26]). In this subsection, we present only some examples of rough inclusion
functions.

The rough inclusion function ν$ : P (U) × P (U) → [0, 1] defines the degree
of inclusion of X in Y , where X,Y ⊆ U .

In the simplest case it can be defined by (see, e.g., [32, 18]):

νSRI (X,Y ) =

{

card(X∩Y )
card(X) if X 6= ∅

1 if X = ∅.

This measure is widely used by the data mining and rough set communities. It
is worth mentioning that Jan  Lukasiewicz [12] was the first one who used this
idea to estimate the probability of implications. However, rough inclusion can
have a much more general form than inclusion of sets to a degree (see, e.g., [27,
26, 39]).

Another example of rough inclusion function νt can be defined using the
standard rough inclusion and a threshold t ∈ (0, 0.5) using the following formula:

νt (X,Y ) =







1 if νSRI (X,Y ) ≥ 1 − t
νSRI(X,Y )−t

1−2t
if t ≤ νSRI (X,Y ) < 1 − t

0 if νSRI (X,Y ) ≤ t.

The rough inclusion function νt is used in the variable precision rough set ap-
proach [49].

Another example of rough inclusion is used for function approximation [39]
and relation approximation [41].



Then the inclusion function ν∗ for subsets X,Y ⊆ U × U , where X,Y ⊆ R
and R is the set of reals, is defined by

ν∗ (X,Y ) =

{

card(π1(X∩Y ))
card(π1(X)) if π1(X) 6= ∅

1 if π1(X) = ∅.
(1)

where π1 is the projection operation on the first coordinate. Assume now, that
X is a cube and Y is the graph G(f) of the function f : R −→ R. Then, e.g.,
X is in the lower approximation of f if the projection on the first coordinate of
the intersection X ∩G(f) is equal to the projection of X on the first coordinate.
This means that the part of the graph G(f) is “well” included in the box X,
i.e., for all arguments that belong to the box projection on the first coordinate
the value of f is included in the box X projection on the second coordinate.

Usually, there are several parameters that are tuned in searching for a relevant
rough inclusion function. Such parameters are listed in the vector #. An example
of such parameters is the threshold mentioned for the rough inclusion function
used in the variable precision rough set model. We would like to mention some
other important parameters. Among them are pairs (L∗, ‖ · ‖∗U ) where L∗ is an
extension of L and ‖ · ‖∗U is an extension of ‖ · ‖U , where (L, ‖ · ‖U ) is a sensory
environment. For example, if L consists of sensory formulas a = v for a ∈ A and
v ∈ Va then one can take as L∗ the set of descriptor conjunctions. For rule based
classifiers we search in such a set of formulas for relevant patterns for decision
classes. We present more detail in the following section.

2.3 Lower and upper approximations

The lower and the upper approximations of subsets of U are defined as follows.

Definition 2. For any approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by

LOW
(

AS#,$,X
)

= {x ∈ U : ν$ (I# (x) ,X) = 1} ,

UPP
(

AS#,$,X
)

= {x ∈ U : ν$ (I# (x) ,X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space
AS#,$ is the set of all objects, which can be classified with certainty as objects
of X with respect to AS#,$. The upper approximation of a set X with respect
to the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximations can be covered using
the discussed here approximation spaces, e.g., the approach given in [18], ap-
proximations based on the variable precision rough set model [49] or tolerance
(similarity) rough set approximations (see, e.g., [32] and references in [32]).

Classification methods for concept approximation developed in machine learn-
ing and pattern recognition make it possible to decide for a given object if it
belongs to the approximated concept or not [7]. The classification methods yield
the decisions using only partial information about approximated concepts. This



fact is reflected in the rough set approach by assumption that concept approx-
imations should be defined using only partial information about approximation
spaces. To decide if a given object belongs to the (lower or upper) approximation
of a given concept the rough inclusion function values are needed. In the next sec-
tion we show how such values necessary for classification making are estimated
on the basis of available partial information about approximation spaces.

3 Concept Approximation by Partial Information about

Approximation Spaces

In machine learning and pattern recognition [7] we often search for approxima-
tion of a concept C ⊂ U∗ in approximation space AS∗ = (U∗, I∗, ν∗) having
only a partial information about AS∗ and C, i.e., information restricted to a
sample U ⊂ U∗. Let us denote the restriction of AS∗ to U by AS = (U, I, ν),
i.e., I(x) = I∗(x) ∩ U , ν(X,Y ) = ν∗(X,Y ) for x ∈ U, andX, Y ⊆ U .

To decide if a given object x belongs to the lower approximation or the
upper approximation of C ⊂ U∗, it is necessary to know the value ν∗(I∗(x), C).
However, in case there is only partial information about the approximation space
AS∗ available, then one must make an estimation of such a value rather than its
exact value. In machine learning, pattern recognition or data mining different
heuristics are used for estimation of the values of ν∗. Using different heuristic
strategies, values of another function ν′ are computed and they are used for
estimation of values of ν∗. Then, the function ν′ is used for deciding if objects
belong to C or not. Hence, we define an approximation of C in the approximation
space AS′ = (U∗, I∗, ν′) rather than in AS∗. Usually, it is required that the
approximations of C ∩ U in AS and AS′ are close (or the same). If a new
portion of objects extending the sample U to U1 is received, then the closeness
of approximations of C in the new approximation space AS1 = (U1, I1, ν1) (where
I1, ν1 are obtained by restriction of I∗, ν∗ to U1) with approximations over AS′

restricted to U1 is verified. If the approximations are not close enough, then the
definition of ν′ is modified using new information about the extended sample.
In this way, we gradually improve the quality of approximation of C on larger
parts of the universe U∗. This idea is presented in Figure 1.

Now, we would like to explain in more detail a method for estimation of
values ν∗(I∗(x), C). Let us consider an illustrative example. In the example we
follow a method often used in rule based classifiers [39]. The method is based
on the following steps. First, a set of patterns that are used as left hand sides
of decision rules, is induced. Each pattern describes a set of objects in U∗ with
a satisfactory degree of inclusion to one of decision classes (C or U∗ − C for
the binary decision). Next, for any object the set of all such patterns that are
matched to a satisfactory degree by the given object is extracted. Finally, it is
applied a conflict resolution strategy (e.g., voting) for resolving conflicts between
votes for different decisions by the matched patterns.

We now present an illustrative example to describe this process more for-
mally in the framework of approximation spaces. First, we assume that among



AS*=(U*,...,)

...

AS2=(U2,...,)

AS1=(U1,...,)

AS=(U,...,)

Fig. 1. Partial information about approximation space AS
∗.

parameters of rough inclusion functions are pairs (PAT, ‖ · ‖U∗), where PAT is
a set of descriptor conjunctions over a set of condition attributes and ‖ · ‖U∗ :
PAT −→ P (U∗) is the semantics of patterns in U∗. Using such parameters we
estimate the value ν∗(‖pat‖U∗ , C) by ν(‖pat‖U , C ∩ U) for any pat ∈ PAT
and we obtain, for a given threshold deg ∈ [0, 1], the set S1 of all patterns pat
such that ν(‖pat‖U , C ∩ U) ≥ deg, i.e., consisting of patterns “for” the con-
cept C. In an analogous way we obtain the set S2 of all patterns pat satisfying
ν∗(‖pat‖U∗ , U∗−C) ≥ deg. S2 consists of patterns “for” the complement U∗−C
of the concept C. Next, we estimate ν∗(I∗(x), ‖pat‖U∗) for pat ∈ Si, for i = 1, 2.
To do this we use our assumption on computing I∗(x) for x ∈ U∗. We assume
that the sensory formulas from L are descriptors a = v over the condition at-
tributes from a given set of condition attributes A with the semantics in U∗

defined by ‖a = v‖U∗ = {x ∈ U∗ : a(x) = v} for a ∈ A and v ∈ Va, where
Va is the value set of a. We also have I∗(x) = {y ∈ U∗ : InfA(x) = InfA(y)},
where InfA(x) = {(a, a(x)) : a ∈ A}. Often, we estimate ν∗(I∗(x), ‖pat‖U∗)
using a matching strategy based on similarity of the syntactic description of x
by InfA(x) and the pattern pat. In this way we obtain for a given x the set
S′

i of all patterns pat ∈ Si (for i = 1, 2) such that ν(I∗(x) ∩ U, ‖pat‖U ) ≥ deg1

where deg1 ∈ [0, 1] is a given threshold. Finally, the estimation ν′(I∗(x), C) of
the value ν∗(I∗(x), C) is obtained by application to the sets S′

1, S
′

2 a conflict
resolution strategy for resolving conflicts between patterns “for” and “against”
the membership of x to C.

Usually, the function ν′ is parameterized, e.g., by a threshold to which at
least the patterns should be included into the decision classes. Also the dis-



cussed sets of patterns are among parameters of ν′ tuned in the process of rule
based classifier construction. Moreover, matching strategies used for estimation
of matching degrees are usually parameterized and such parameters are also
among tuned parameters of ν′. In machine learning, pattern recognition and
data mining many different searching techniques have been developed for induc-
ing concept approximations of the high quality. Among such components are
relevant features, patterns, measures of closeness, model quality measures.

The approximation spaces defined above have been generalized in [39] to
approximation spaces consisting of information granules.

4 Operations on approximation spaces

In this section, we introduce operations on approximation spaces called con-
strained sums of approximation spaces. On the basis of such operations we have
developed a methodology for discovery of relevant patterns for complex concept
approximations (see [3, 36, 37]), e.g., in hierarchical learning, ontology approxi-
mation, and spatio-temporal reasoning (see, e.g., [5, 6, 16, 38]). This methodology
is also relevant for approximate reasoning in distributed environments.

We assume that for approximation spaces

AS#,$ = (U, I#, ν$)

considered in this section the following conditions are satisfied (see Section 2.1
and Section 2.2):

1. The values of the uncertainty function I# are defined using the sensory
environment (L, ‖ · ‖U ) of AS#,$ , where L is a set of formulas, called the
sensory formulas, and ‖ · ‖U : L −→ P (U) is the sensory semantics. The
sensory environment is one of the components of the vector #.

2. The values I#(x) are defined by
⋂

NAS(x) for any x ∈ U .
3. ν = νSRI (i.e., ν is the standard rough inclusion, see Section 2)
4. Only a partial information about the approximation space AS#,$ is given,

i.e., the restriction of AS#,$ to a subset Uo ⊆ U .
5. The values of the rough inclusion function ν$ are estimated using a pair

(L∗, ‖ · ‖∗U ) where L∗ is an extension of L and ‖ · ‖∗U is na extension of ‖ · ‖U ,
where (L, ‖ · ‖U ) is the sensory environment of AS#,$. The pair (L∗, ‖ · ‖∗U )
is one of the components of the vector $. The formulas from L∗ are patterns
that are used for estimation of values of ν$ (see Section 3).

Now, the operations on approximation spaces, by analogy to the constrained
sums of information systems [3, 36, 37], can be defined as follows. To simplify
notation we consider only the case of binary operations.

For approximation spaces ASi for i = 1, 2 we consider the class

CONSTRAINT (AS1, AS2)

of all approximation spaces AS = (U, I, ν) satisfying the following conditions:



1. For estimation of values of ν an extension (L∗, ‖ · ‖∗U ) of (L∗,i, ‖ · ‖∗,i
U ), where

i = 1, 2 is used. An extension is satisfying the conditions: L∗,1∪L∗,2 ⊆ L and
‖α‖U = ‖α‖i

U for α ∈ Li, where i = 1, 2. The formulas from L∗−(L∗,1∪L∗,2)
are called constraints. We also assume that any constraint α is a boolean
combination of formulas from L∗,1∪L∗,2, e.g., disjunction of formulas α1∧α2

for α1 ∈ L∗,1 and α2 ∈ L∗,2.
2. The sensory environment of AS is defined by (L, ‖ · ‖U ).

Any operation o on approximation spaces such that

o(AS1, AS2) ∈ CONSTRAINT (AS1, AS2)

for any approximation spaces AS1, AS2 from a generic set AS of approximation
spaces, is called the constrained sum.

4.1 Hierarchical Learning

In hierarchical learning we consider the space SPACE(AS,F) generated from
AS by the set F of constrained sums. Searching for relevant approximation
spaces from SPACE(AS,F) is making it possible to discover relevant patterns
for concept approximation [5, 6, 16]. Constrained sums of approximation spaces
are tools for modelling patterns that are more relevant for approximation of
concepts than patterns defined by arguments of the constrained sum.

Assume that approximation spaces AS1, AS2 are used for approximation of
concepts C1, C2 and that the dependency if C1 and C2 then C holds. Note, that
usually many such dependencies should be considered for the concept approxi-
mation. However, for simplicity of presentation we consider only one.

If the concept C is, in a sense, not to far from C1 and C2 than one can
search in SPACE(AS,F) for a constrained sum o(AS1, AS2) relevant for the
concept C approximation. If AS = o(AS1, AS2) than patterns defined in AS
are more general than the conjunction of sensory formulas defined by AS1, AS2.
This happens because new patterns are defined by joining patterns of AS1, AS2

relative to constraints. Let us recall that patterns of AS1, AS2 belong to the
extension of the set of sensory formulas of AS1, AS2 (see the definition of
CONSTRAINT (AS1, AS2)). Hence, sensory formulas of AS are conjunction
of patterns of AS1, AS2 and constraints. By allowing to use patterns instead
of sensory formulas in joining AS1, AS2 we define a searching space for rele-
vant patterns and from such a space are extracted relevant joins (relative to
constraints) of patterns for approximation of concepts.

If the concept C is far from C1 and C2 then we use a hierarchy of depen-
dencies between concepts from domain knowledge in searching for the relevant
approximation space for C. The approximation of C is obtained using hierarchi-
cal learning [5, 6, 16]. We assume that (1) the generic concepts C1 and C2 on the
lowest level of the hierarchy can be approximated by some generic approximation
spaces, (2) the concepts on a given level that are not generic follow form concepts
on the lower level, and (3) the relevant approximation spaces for concepts on a



given level of the hierarchy can be discovered using relevant constrained sums
of approximation spaces from the previous hierarchy level. Then we proceed as
follows. Starting from some generic concepts and approximation spaces relevant
for them we construct approximation spaces for concepts on the first level in
hierarchy that follow from these generic concepts and can be approximated by
relevant constrained sums over these approximation spaces. Next, we perform
the same procedure for the recently approximated concepts and the concepts on
the next level of hierarchy. We continue the procedure until the target concept
is approximated.

Let us consider one more example of applications of constrained sums of ap-
proximation spaces for approximation of dependency between vague concepts.
This problem is important in ontology approximation [34, 40]. Any concept from
the left hand side of a given vague dependency is called its premise and the
dependency conclusion is the concept from the right hand side of the depen-
dency. The approximation of a given vague dependency is defined by a method
which allows for any object to compute the arguments “for” and “against” its
membership to the dependency conclusion on the basis of analogous arguments
relative to the dependency premisses [40]. Any argument “for” or “against” is a
compound information granule (pattern) consisting of a pattern together with a
degree to which (at least) this pattern is included to the concept and a degree to
which (at least) the analyzed object is included to the pattern. Such arguments
“for” and “against” that are relevant for the dependency conclusion are con-
structed from the arguments “for” and “against” for the dependency premisses
by using constrained sums. Such constructions are called the local schemes. Any
local scheme (production rule) (see, e.g., [35]) or rough mereological connec-
tive (see, e.g., [28]) yields the fusion result of arguments for premisses that is
next taken as the argument for the dependency conclusion. By composition of
local schemes more advanced fusion schemes are obtained, called approximate
reasoning schemes (AR schemes) (see, e.g., [5, 35, 28, 38]). They show how the
arguments from premisses of dependencies are fused to arguments for more com-
pound concepts derived in a given ontology from premisses. AR schemes can cor-
respond to different parts of complex spatio-temporal objects. Hence, there is a
need for composing AR schemes for parts into AR schemes for objects composed
from these parts [38].

5 Reinforcement Learning

By way of another illustration of the utility of approximation spaces, a rough set
approach to reinforcement learning is briefly considered in this section. The study
of reinforcement learning carried out in the context of approximation spaces
is outgrowth of recent work on approximate reasoning and intelligent systems
(see, e.g., [24, 25, 23, 30, 31, 20, 22]). An overview of a Monte Carlo approach to
reinforcement learning with approximation spaces is given in [21]. The basic
problem that provides a setting for reinforcement learning is formulated by [29]:
a system is required to interact with its environment to achieve a particular task



or goal, and based on the feedback about the current state of the environment,
what action should the system perform next? Reinforcement learning itself is
the act of learning the correct action to take in a specific situation based on
feedback obtained from the environment [44].

Feedback is in the form of a numerical reward that results from an action
performed by an agent. Specifically, reinforcement learning can be divided into
off-line and on-line learning. Off-line learning is similar to the idea of a student
learning by instruction from a teacher. In effect, the agent is taught what it
needs to know before venturing into the environment in which it is to operate.
In contrast, on-line learning resembles an infant learning to walk. Learning oc-
curs in real-time in which the agent is exploring its environment and constantly
adding to its experience in order to make better decisions in the future. Learning
techniques are typically applied to stationary or non-stationary models of the
environment. In stationary models all the state transition probabilities are fixed,
whereas, in non-stationary models they change over time.

Let ASDT,B = (Ubeh, IB , νB) denote an approximation space defined in the
context of a decision system DT = (Ubeh, A, d), where Ubeh is a non-empty set
of behaviors, A is a set of swarmbot behavior features, B ⊆ A, and d is a distin-
guished attribute representing a swarmbot decision. Let D = {x ∈ U : d(x) = 1},
where d(x) = 1 specifies that behavior x has been accepted by a swarmbot. As-
sume that IB : Ubeh → P (Ubeh) is used to compute B∗D = LOW (ASDT,B ,D).
We also assume that among condition attributes there is an attribute Action
such that VAction is the set of possible actions in the considered system and
Action(x) denotes the action performed in state x by the system. Moreover,
we assume that for a condition attribute Time ∈ A it is recorded information
about the time in which the state has been observed. We use the notation st to
denote a pair (s, T ime(s)). Further, let B∗D represent a standard for swarmbot
behaviors, and let Bac(x) be a block in the partition of Ubeh containing x relative
to action ac (i.e., Bac(x) contains behaviors for a particular action ac that are
equivalent to x). The block Bac(x) where ac ∈ VAction is defined in (2).

Bac(x) =

{

{y ∈ Ubeh : xIND (B ∪ {Action}) y} if Action(x) = ac
∅ otherwise.

(2)

Then we can measure the inclusion of Bac(x) into B∗D as in (3).

ν(Bac (x) , B∗D) =

{

νSRI(Bac (x) , B∗D) if Bac(x) 6= ∅
0 otherwise,

(3)

where νSRI is the standard rough inclusion function (see Section 2.2).

B∗D represents certain knowledge about the behaviors in D. For this reason,
B∗D provides a useful behavior standard or behavior norm in gaining knowl-
edge about the proximity of behaviors to what is considered normal. The term



normal applied to a set of behaviors denotes forms of behavior that have been
accepted. The introduction of some form of behavior standard makes it possible
to measure the inclusion of blocks of equivalent action-specific behaviors in the
set of those behaviors that are part of a standard. The framework provided by an
approximation space makes it possible to derive pattern-based rewards, which
are used by swarms that learn to choose actions in response to perceived states
of their environment (see, e.g., Figure 2). The notation r̄ac,t denotes an average
rough inclusion value computed within the context of an approximation space
using (3) as shown in (4).

r̄ac,t =
n

∑

i=0

ν(Bac(xt−i), B∗D)/n (4)

where T = (t − n, . . . , t) denotes the time window of the length n, xt−n, . . . , xt

are states observed in this time window (i.e., in an episode of the system).
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Fig. 2. Reinforcement learning framework

The notation pc in Figure 2 denotes proximate cause, which is one of the four
whys introduced by Niko Tinbergen [45] to explain observed behavior (see,
e.g., [19, 21], where pc is explained in more detail in the context of approximation
spaces). The decision table DT = (Ubeh, A, d) in Figure 2 provides a record of
behavior patterns observed during different episodes in the life of system.

The notation Q(st, ac) in Figure 2 denotes the value of an action ac in state
s at time t, i.e., in st.

There are different strategies for computing Q(st, ac). They make it possible
to estimate how successful the performance of an action ac in st can be.



For example, let Wac,t denote an average of the weights over a time window
(see (5)).

Wac,t =

∑n

i=1 r̄ac,t−i

n
, (5)

Let us now assume that Rac,t denotes the sum of the rewards (returns) during
an episode for the action ac over the time window ending at t. Then the value
Q(st, ac) of ac in st is defined by

Q(st, ac) =
n

∑

i=1

r̄ac,t−i

Wac,t−i

[Rac,t−i − Q(st−i, ac)] . (6)

An analogous strategy has been successfully used in a new form of Monte
Carlo off-policy reinforcement learning (see, e.g., [21]).

Conclusions

We discussed the approximation of concepts using the rough set approach. In
particular, the role of approximation spaces and operations on approximation
spaces, called constrained sums, in hierarchical learning has been emphasized.

In our project we are developing evolutionary strategies searching for relevant
approximation spaces for concept approximation of a given ontology [34] of con-
cepts. We also investigate properties of evolutionary strategies for constructing
sequences of approximation spaces in adaptive approximation of concepts.

We also plan to use the methodology for concept approximation modelling
by constrained sums in multiagent systems [11]. Constructing of relevant con-
strained sums requires negotiations and conflict resolution between agents con-
structing approximation spaces for different, e.g., local and global goals. Hence,
e.g., strategies for formation of coalitions in cooperative searching for relevant
approximation spaces for different local and global goals related to concept ap-
proximation are needed.
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