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Summary. In this article, we further study the problem of soft applicability of rules
within the framework of approximation spaces. Such forms of applicability are gen-
erally called rough. The starting point is the notion of graded applicability of a rule
to an object, introduced in our previous work and referred to as fundamental. The
abstract concept of rough applicability of rules comprises a vast number of particu-
lar cases. In the present paper, we generalize the fundamental form of applicability
in two ways. Firstly, we more intensively exploit the idea of rough approximation of
sets of objects. Secondly, a graded applicability of a rule to a set of objects is de-
fined. A better understanding of rough applicability of rules is important for building
the ontology of an approximate reason and, in the sequel, for modeling of complex
systems, e.g., systems of social agents.
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1 Introduction

It is hardly an exaggeration to say that soft application of rules is the pre-
vailing form of rule following in real life situations. Though some rules (e.g.,
instructions, regulations, laws, etc.) are supposed to be strictly followed, it
usually means “as strictly as possible” in practice. Typically, people tend to
apply rules “softly” whenever the expected advantages (gain) surpass the pos-
sible loss (failure, harm). Soft application of rules is usually more efficient and
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effective than the strict one, however, at the cost of the results obtained. In
many cases, adaptation to changing situations requires a change in the mode
of application of rules only, retaining the rules unchanged. Allowing rules to
be applied softly simplifies multi-attribute decision making under missing or
uncertain information as well.

As a research problem, applicability of rules concerns strategies (meta-
rules) which specify the permissive conditions for passing from premises to
conclusions of rules. In this paper, we analyze soft applicability of rules within
the framework of approximation spaces (ASs) or, in other words, rough ap-
plicability of rules. The first step has been already made by introducing the
concept of graded applicability of a rule to an object of an AS [3]. This funda-
mental form of applicability is based on the graded satisfiability and meaning
of formulas and their sets, studied in [2]. The intuitive idea is that a rule r
is applicable to an object u in degree t iff a sufficiently large part of the set
of premises of r is satisfied for u in a sufficient degree, where sufficiency is
determined by t. We aim at extending and refining this notion step by step.
For the time being, we propose two generalizations. In the first one, the idea
of approximation of sets of objects is exploited more intensively. The second
approach consists in extending the graded applicability of a rule to an object
to the case of graded applicability of a rule to a set of objects.

Studying various rough forms of applicability of rules is important for
building the ontology of an approximate reason. In [9], Peters et al. consider
structural aspects of such an ontology. A basic assumption made is that an
approximate reason is a capability of an agent. Agents classify information
granules, derived from sensors or received from other agents, in the context of
ASs. One of the fundamental forms of reasoning is a reflective judgment that
a particular object (granule of information) matches a particular pattern. In
the case of rules, agents judge whether or not, and how far an object (set of
objects) matches the conditions for applicability of a rule. As explained in [9]:

Judgment in agents is a faculty of thinking about (classifying) the
particular relative to decision rules derived from data. Judgment in
agents is reflective but not in the classical philosophical sense [. . . ]. In
an agent, a reflective judgment itself is an assertion that a particular
decision rule derived from data is applicable to an object (input). [. . . ]
Again, unlike Kant’s notion of judgment, a reflective judgment is not
the result of searching for a universal that pertains to a particular set
of values of descriptors. Rather, a reflective judgment by an agent is a
form of recognition that a particular vector of sensor values pertains
to a particular rule in some degree.

The ontology of an approximate reason may serve as a basis for modeling of
complex systems like systems of social, highly adaptive agents, where rules are
allowed to be followed flexibly and approximately. Since one and the same rule
may be applied in many ways depending, among others, on the agent and the
situation of (inter)action, we can to a higher extent capture the complexity
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of the modelled system by means of relatively less rules. Moreover, agents
are given more autonomy in applying rules. From the technical point of view,
degrees of applicability may serve as lists of tuning parameters to control
application of rules. Another area of possible use of rough applicability is
multi-attribute classification (and, in particular, decision making). In the case
of an object to which no classification rule is applicable in the strict sense, we
may try to apply an available rule roughly. This happens in the real life, e.g.,
in the process of selection of the best candidate(s), where no candidate fully
satisfies the requirements. If a decision is to be made anyway, some conditions
should be omitted or their satisfiability should be treated less strictly. Rough
applicability may also help in classification of objects, where some values of
attributes are missing.

In Sect. 2, approximation spaces are overviewed. Section 3 is devoted to the
notions of graded satisfiability and meaning of formulas. In Sect. 4, we gener-
alize the fundamental notion of applicability in the two directions mentioned
earlier. Section 5 contains a concise summary.

2 Approximation Spaces

The general notion of an approximation space (AS) was proposed by Skowron
and Stepaniuk [13, 14, 16]. Any such space is a triple M = (U, Γ, κ), where U
is a non-empty set, Γ : U 7→ ℘U is an uncertainty mapping, and κ : (℘U)2 7→
[0, 1] is a rough inclusion function (RIF). ℘U and (℘U)2 denote the power
set of U and the Cartesian product ℘U × ℘U , respectively. Originally, Γ and
κ were equipped with tuning parameters, and the term “parameterized” was
therefore used in connection with ASs. Exemplary ASs are the rough ASs,
induced by the Pawlak information systems [6, 8].

Elements of U , called objects and denoted by u with subscripts whenever
needed, are known by their properties only. Therefore, some objects may be
viewed as similar. Objects similar to an object u constitute a granule of infor-
mation in the sense of Zadeh [17]. Indiscernibility may be seen as a special case
of similarity. Since every object is obviously similar to itself, the universe U of
M is covered by a family of granules of information. The uncertainty mapping
Γ is a basic mathematical tool to describe formally granulation of information
on U . For every object u, Γu is a set of objects similar to u, called an elemen-
tary granule of information drawn to u. By assumption, u ∈ Γu. Elementary
granules are merely building blocks to construct more complex information
granules which form, possibly hierarchical, systems of granules. Simple ex-
amples of complex granules are the results of set-theoretical operations on
granules obtained at some earlier stages, rough approximations of concepts,
or meanings of formulas and sets of formulas in ASs. An adaptive calculus
of granules, measure(s) of closeness and inclusion of granules, construction of
complex granules from simpler ones which satisfy a given specification are a
few examples of related problems (see, e.g., [11, 12, 15, 16]).
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In our approach, a RIF κ : (℘U)2 7→ [0, 1] is a function which assigns to
every pair (x, y) of subsets of U , a number in [0, 1] expressing the degree of in-
clusion of x in y, and which satisfies postulates (A1)–(A3) for any x, y, z ⊆ U :
(A1) κ(x, y) = 1 iff x ⊆ y; (A2) If x 6= ∅, then κ(x, y) = 0 iff x∩y = ∅; (A3) If
y ⊆ z, then κ(x, y) ≤ κ(x, z). Thus, our RIFs are somewhat stronger than the
ones characterized by the axioms of rough mereology, proposed by Polkowski
and Skowron [10, 12]. Rough mereology extends Leśniewski’s mereology [4] to
a theory of the relationship of being-a-part-in-degree.

Among various RIFs, the standard ones deserve a special attention. Let the
cardinality of a set x be denoted by #x. Given a non-empty finite set U and

x, y ⊆ U , the standard RIF, κ£, is defined by κ£(x, y) =

{
#(x∩y)

#x if x 6= ∅
1 otherwise.

The notion of a standard RIF, based on the frequency count, goes back to
 Lukasiewicz [5]. In our framework, where infinite sets of objects are allowed, by
a quasi-standard RIF we understand any RIF which for finite first arguments
is like the standard one.

In M, sets of objects (concepts) may be approximated in various ways
(see, e.g., [1] for a discussion and references). In [14, 16], a concept x ⊆ U is
approximated by means of the lower and upper rough approximation mappings
low, upp : ℘U 7→ ℘U , respectively, defined by

lowx = {u ∈ U | κ(Γu, x) = 1} and uppx = {u ∈ U | κ(Γu, x) > 0}. (1)

By (A1)–(A3), the lower and upper rough approximations of x, lowx and
uppx, are equal to {u ∈ U | Γu ⊆ x} and {u ∈ U | Γu ∩ x 6= ∅}, respectively.

Ziarko [18, 19] generalized the Pawlak rough set model [7, 8] to a variable-
precision rough set model by introducing variable-precision positive and nega-
tive regions of sets of objects. Let t ∈ [0, 1]. Within the AS framework, in line
with (1), the mappings of t-positive and t-negative regions of sets of objects,
post, negt : ℘U 7→ ℘U , respectively, may be defined as follows, for any set of
objects x:2

postx = {u ∈ U | κ(Γu, x) ≥ t} and negtx = {u ∈ U | κ(Γu, x) ≤ t}. (2)

Notice that lowx = pos1x and uppx = U − neg0x.

3 The Graded Meaning of Formulas

Suppose a formal language L expressing properties of M is given. The set of
all formulas of L is denoted by FOR. We briefly recall basic ideas concerning
the graded satisfiability and meaning of formulas and their sets, studied in [2].
Given a relation of (crisp) satisfiability of formulas for objects of U , |=c, the
c-meaning (or, simply, meaning) of a formula α is understood as the extension
2 The original definitions, proposed by Ziarko, are somewhat different.
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of α, i.e., as the set ||α||c = {u ∈ U | u |=c α}. For simplicity, “c” will be
omitted in formulas whenever possible. By introducing degrees t ∈ [0, 1], we
take into account the fact that objects are perceived through the granules of
information attached to them. In the formulas below, u |=t α reads as “α is
t-satisfied for u” and ||α||t denotes the t-meaning of α:

u |=t α iff κ(Γu, ||α||) ≥ t and ||α||t = {u ∈ U | u |=t α}. (3)

In other words, ||α||t = post||α||. Next, for t ∈ T = [0, 1] ∪ {c}, the set
of all formulas which are t-satisfied for an object u is denoted by |u|t, i.e.,
|u|t = {α ∈ FOR | u |=t α}. Notice that it may be t = c here.

The graded satisfiability of a formula for an object is generalized on the
left-hand side to a graded satisfiability of a formula for a set of objects, and
on the right-hand side to a graded satisfiability of a set of formulas for an
object, where degrees are elements of T1 = T × [0, 1]. For any n-tuple t and
i = 1, . . . , n, let πit denote the i-th element of t. For simplicity, we use |=t, |·|t,
and || · ||t both for the (object, formula)-case as well as for its generalizations.
Thus, for any object u, a set of objects x, a formula α, a set of formulas X,
a RIF κ∗ : (℘FOR)2 7→ [0, 1], and t ∈ T1,

x |=t α iff κ(x, ||α||π1t) ≥ π2t and |x|t = {α ∈ FOR | x |=t α};
u |=t X iff κ∗(X, |u|π1t) ≥ π2t and ||X||t = {u ∈ U | u |=t X}. (4)

u |=t X reads as “X is t-satisfied for u”, and ||X||t is the t-meaning of
X. Observe that |=t extends the classical, crisp notions of satisfiability of
the sorts (set-of-objects, formula) and (object, set-of-formulas). Along the
standard lines, x |= α iff ∀u ∈ x.u |= α, and u |= X iff ∀α ∈ X.u |= α. Hence,
x |= α iff x |=(c,1) α, and u |= X iff u |=(c,1) X. Properties of the graded
satisfiability and meaning of formulas and sets of formulas may be found in
[2]. Let us only mention that a non-empty finite set of formulas X cannot be
replaced by a conjunction

∧
X of all its elements as it happens in the classical,

crisp case. In the graded case, one can only prove that ||
∧

X||t ⊆ ||X||(t,1),
where t ∈ T , but the converse may not hold.

4 The Graded Applicability of Rules Generalized

All rules over L, denoted by r with subscripts whenever needed, constitute a
set RUL. Any rule r is a pair of finite sets of formulas of L, where the first
element, Pr, is the set of premises of r and the second element of the pair is
a non-empty set of conclusions of r. Along the standard lines, a rule which is
not applicable in a considered sense is called inapplicable.

A rule r is applicable to an object u in the classical sense iff the whole
set of premises Pr is satisfied for u. The graded applicability of a rule to an
object, viewed as a fundamental form of rough applicability here, is obtained
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by replacing the crisp satisfiability by its graded counterpart and by weakening
the condition that all premises be satisfied [3]. Thus, for any t ∈ T1,

r ∈ apltu iff κ∗(Pr, |u|π1t) ≥ π2t, i.e., iff u ∈ ||Pr||t. (5)

r ∈ apltu reads as “r is t-applicable to u”.3 Properties of aplt are pre-
sented in [3]. Let us only note that the classical applicability and the (c, 1)-
applicability coincide.

Example 1. In the textile industry, a norm determining whether or not the
quality of water to be used in the process of dyeing of textiles is satisfac-
tory, may be written as a decision rule r with 16 premises and one con-
clusion (d, yes). In this case, the objects of the AS considered are samples
of water. The c-meaning of the conclusion of r is the set of all samples of
water u ∈ U such that the water may be used for dyeing of textiles, i.e.,
||(d, yes)|| = {u ∈ U | d(u) = yes}. Let a1, . . . , a7 denote the attributes: colour
(mg Pt/l), turbidity (mg SiO2/l), suspensions (mg/l), oxygen consumption
(mg O2/l), hardness (mval/l), Fe content (mg/l), and Mn content (mg/l), re-
spectively. Then, (a1, [0, 20]), (a2, [0, 15]), (a3, [0, 20]), (a4, [0, 20]), (a5, [0, 1.8]),
(a6, [0, 0.1]), and (a7, [0, 0.05]) are exemplary premises of r. For instance, the c-
meaning of (a2, [0, 15]) is the set of all samples of water such that their turbid-
ity does not exceed 15 mg SiO2/l, i.e., ||(a2, [0, 15])|| = {u ∈ U | a2(u) ≤ 15}.
Suppose that the values of a2, a3 slightly exceed 15, 20 for some sample u,
respectively, i.e., the second and the third premises are not satisfied for u,
whereas all remaining premises hold for u. That is, r is inapplicable to the
sample u in the classical sense, yet it is (c, 0.875)-applicable to u. Under special
conditions as, e.g., serious time constraints, applicability of r to u in degree
(c, 0.875) may be viewed as sufficient or, in other words, the quality of u may
be viewed as satisfactory if the gain expected surpass the possible loss.

Observe that r ∈ apltu iff u ∈ I℘U ||Pr||t, where I℘U is the identity mapping
on ℘U . A natural generalization of (5) is obtained by taking a mapping f$ :
℘U 7→ ℘U instead of I℘U , where $ is a possibly empty list of parameters.
For instance, f$ may be an approximation mapping. In this way, we obtain a
family of mappings aplf$

t : U 7→ ℘RUL, parameterized by t ∈ T1 and $, and
such that for any r and u,

r ∈ aplf$
t u

def↔ u ∈ f$||Pr||t. (6)

The family is partially ordered by v, where for any t1, t2 ∈ T1,

aplf$
t1 v aplf$

t2

def↔ ∀u ∈ U.aplf$
t1 u ⊆ aplf$

t2 u. (7)

The general notion of rough applicability, introduced above, comprises a
number of particular cases, including the fundamental one. In fact, aplt =

3 Equivalently, “r is applicable to u in degree t”.
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aplI℘U

t . Next, e.g., r ∈ apllowt u iff u ∈ low||Pr||t iff r is t-applicable to every
object similar to u. In the same vein, r ∈ aplupp

t u iff u ∈ upp||Pr||t iff r is
t-applicable to some object similar to u. We can also say that r is certainly t-
applicable and possibly t-applicable to u, respectively. In the variable-precision
case, for f = poss and s ∈ [0, 1], r ∈ aplft u iff u ∈ poss||Pr||t iff r is t-applicable
to a sufficiently large part of Γu, where sufficiency is determined by s. In a
more sophisticated case, where f = poss ◦ low (◦ denotes the concatenation
of mappings), r ∈ aplft u iff u ∈ posslow||Pr||t iff κ(Γu, low||Pr||t) ≥ s iff r
is certainly t-applicable to a sufficiently large part of Γu, where sufficiency is
determined by s. Etc.

For t = (t1, t2) ∈ [0, 1]2, the various forms of rough t-applicability are
determined up to granularity of information. An object u is merely viewed as
a representative of the granule of information Γu drawn to it. More precisely,
a rule r may practically be treated as applicable to u even if no premise is, in
fact, satisfied for u. It is enough that premises are satisfiable for a sufficiently
large part of the set of objects similar to u. If used reasonably, this feature
may be advantageous in the case of missing data. The very idea is intensified
in the case of poss. Then, r is t-applicable to u in the sense of poss iff it is
t-applicable to a sufficiently large part of the set of objects similar to u, where
sufficiency is determined by s. This form of applicability may be helpful in
classification of u if we cannot check whether or not r is applicable to u and,
on the other hand, it is known that r is applicable to a sufficiently large part
of the set of objects similar to u. Next, rough applicability in the sense of low
is useful in modeling of such situations, where the stress is laid on the equal
treatment of all objects forming a granule of information. A form of stability
of rules may be defined, where r is called stable in a sense considered if for
every u, r is applicable to u iff r is applicable to all objects similar to u in the
very sense.

Example 2. Consider a situation of decision making whether or not to support
a student financially. In this case, objects of the AS are students applying for a
bursary. Suppose that some data concerning a person u is missing which makes
decision rules inapplicable to u in the classical, crisp sense. For simplicity,
assume that r would be the only decision rule applicable to u unless the data
were missing. Let α be the premise of r of which we cannot be sure if it is
satisfied for u or not. Suppose that for 80% of students whose cases are similar
to the case of u, all premises of r are satisfied. Then, to the advantage of u,
we may view r as practically applicable to u. Formally, r is (0.8, 1)-applicable
to u. Additionally, let r be (0.8, 0.9)-applicable to 65% of objects similar to
u. In sum, r is (0.8, 0.9)-applicable to u in the sense of pos0.65.

The second (and last) generalization of the fundamental notion of rough
aplicability, proposed here, consists in extension of applicability of a rule to
an object to the case of applicability of a rule to a set of objects. In the
classical case, a rule is applicable to a set of objects x iff it is applicable to
each element of x. For any a, let (a)n denote the tuple consisting of n copies
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of a, and (a)1 be abbreviated by (a). For arbitrary tuples s, t, st denotes
their concatenation. Next, if t is at least a pair of items (i.e., an n-tuple for
n ≥ 2), then /t is the tuple obtained from t by removing the last element.
For example, (a, b)(1) = (a, b, 1) and /(a, b, 1) = (a, b). In the graded case,
where t ∈ T2 = T1 × [0, 1] = T × [0, 1] × [0, 1], r is called t-applicable to
x, r ∈ Apltx, iff r is /t-applicable to a sufficiently large part of x, where
sufficiency is determined by π3t, i.e.,

r ∈ Apltx
def↔ κ(x, ||Pr||/t) ≥ π3t. (8)

Thus, a family of mappings Aplt : ℘U 7→ ℘RUL is obtained, parameterized
by t ∈ T2 and partially ordered by a relation v, where for any t1, t2 ∈ T2,

Aplt1 v Aplt2
def↔ ∀x ⊆ U.Aplt1x ⊆ Aplt2x. (9)

The graded applicability, introduced above, is an exemplary notion of rough
applicability of a rule to a complex object which is a set of objects of the
underlying approximation space M in our case. This notion may be useful in
modeling of a number of situations. Three such cases are sketched below.

Example 3. Suppose that objects of an AS are questions which may be subject
to negotiation. Then, sets of objects are packets of such questions and repre-
sent possible negotiation problems. Let the rules considered be decision rules
on how to solve particular problems. We can rank decision rules depending,
among others, on their graded applicability to given negotiation problems.
The more questions solved positively by a rule, the better is the rule.

Example 4. Let objects of an AS be school students in a town. A committee
constructs rules to rank classes of students in order to award a prize to the best
class. They search for the most universal rule(s) satisfying some additional
conditions. A rule r is viewed as more universal than a rule r′ iff r applies in
a considered sense to larger parts of given classes of students than r′ does.

Example 5. In a factory, every lot of products is tested whether or not the
articles comply with a norm r or, in other words, how far the norm r is
applicable in some considered sense to every lot of products. In this case,
products are objects of an AS and lots of products are the complex objects
considered. A lot x passes the test if a sufficiently large part of x complies
with r or, in other words, if r applies to x in a sufficient degree.

Below, we present a number of properties of the forms of applicability of
rules defined earlier. For natural numbers n ≥ 1, i = 1, . . . , n, non-empty
partially ordered sets (xi,≤i), and tuples s, t ∈ x1 × . . . × xn, let s � t
iff ∀i = 1, . . . , n.πis ≤i πit. As usual, � is the converse relation of �. The
natural total ordering ≤ on [0, 1] is extended to a partial ordering on T by
taking c ≤ c. A mapping f : ℘x 7→ ℘y is monotone iff for any x1 ⊆ x2 ⊆ x,
fx1 ⊆ fx2.
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Theorem 1. For any objects u, u′, a set of objects x, a mapping f$ : ℘U 7→
℘U , s ∈ [0, 1], and t, t′ ∈ T1, we have:

(a) Where f = poss, aplft u = Aplt(s)Γu.

(b) apllowt = aplpos1
t and aplupp

t u =
⋃
s>0

{aplft u | f = poss}.

(c) If Γu = Γu′ and g ∈ {upp ◦ f$, poss ◦ f$}, then apltu = apltu
′

and aplgt u = aplgt u
′.

(d) If f$ is monotone and t � t′, then aplf$
t′ v aplf$

t .

(e) apllowt v aplt v aplupp
t .

(f) Aplt(1)x =
⋂
{apltu | u ∈ x}.

Proof. We prove (d), (f) only. For (d) consider a rule r and assume (d1) f$

is monotone and (d2) t � t′. First, we show (d3) ||Pr||t′ ⊆ ||Pr||t. Consider
the non-trivial case only, where π1t, π1t

′ 6= c. Assume that u ∈ ||Pr||t′ . Then
(d4) κ∗(Pr, |u|π1t′) ≥ π2t

′ by the definition of graded meaning. Observe that
for any formula α, if κ(Γu, ||α||) ≥ π1t

′, then κ(Γu, ||α||) ≥ π1t by (d2). Hence,
|u|π1t′ ⊆ |u|π1t. As a consequence, κ∗(Pr, |u|π1t′) ≤ κ∗(Pr, |u|π1t) by (A3).
Hence, κ∗(Pr, |u|π1t) ≥ π2t

′ ≥ π2t by (d2), (d4). Thus, u ∈ ||Pr||t by the
definition of graded meaning. In the sequel, f$||Pr||t′ ⊆ f$||Pr||t by (d1), (d3).
Hence, r ∈ aplf$

t′ implies r ∈ aplf$
t by the definition of graded applicability

in the sense of f$. In case (f), for any rule r, r ∈ Aplt(1)x iff x ⊆ ||Pr||t iff
∀u ∈ x.u ∈ ||Pr||t iff ∀u ∈ x.r ∈ apltu iff r ∈

⋂
{apltu | u ∈ x}. ut

Let us briefly comment the results. By (a), rough applicability of a rule to u
in the sense of poss and the graded applicability of a rule to Γu coincide. (b) is
a direct consequence of the properties of approximation mappings. (c) states
that the fundamental notion of rough applicability as well as the graded forms
of applicability in the sense of upp ◦ f$ and poss ◦ f$ are determined up to
granulation of information. By (d), if t � t′, then every rule which is t′-
applicable to an object u in the sense of a monotone mapping f$, is t-applicable
to u in the very sense as well. It follows by (e) that the t-applicability with
certainty implies the fundamental t-applicability, and the latter form implies
the possible t-applicability. Finally, (f) gives a characterization of the t(1)-
applicability of a rule to a set of objects x in terms of the fundamental t-
applicability of the rule to elements of x.

Theorem 2. Let u be any object, x, x′ – sets of objects, r, r′ – rules, s′′ ∈ T ,
s, s′ ∈ T1 such that π1s

′ 6= c, and t, t′ ∈ T2. In cases (j), (k), assume also that
κ is quasi-standard. Then, we have:

(a) r ∈ Apl(s′′,1,1)x iff Pr ⊆ |x|(s′′,1).

(b) Apls(1)U = {r ∈ RUL | ||Pr||s = U}.
(c) Apls(0)x = Apl(0)s′x = Aplt∅ = RUL.
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(d) If π3t > 0, then Aplt{u} = apl/tu.

(e) If t � t′, then Aplt′ v Aplt.
(f) Apl(1)s′ v Apl(s′′)s′ v Apl(0)s′ .

(g)
⋂

x⊆U

⋂
t∈T2

Apltx = Apl(1)3U = Apl(c,1,1)U = {r ∈ RUL | ||Pr|| = U}.

(h) If Pr ⊆ Pr′ and π2t = 1, then r′ ∈ Apltx implies r ∈ Apltx.

(i) If ∃α ∈ Pr.||α||π1t = ∅, π2t = 1, and π3t > 0, then
r ∈ Apltx iff x = ∅.

(j) If x′ ∩ ||Pr||/t = ∅, then r ∈ Aplt(x ∪ x′) implies r ∈ Apltx
and r ∈ Apltx implies r ∈ Aplt(x− x′).

(k) If x′ ⊆ ||Pr||/t and r ∈ Aplt(x− x′), then r ∈ Apltx.

Proof. We prove (g) only. First, note that (g1) Apl(1)3U = {r ∈ RUL |
||Pr||(1,1) = U} and (g2) Apl(c,1,1)U = {r ∈ RUL | ||Pr|| = U} by (b). It is
easy to see that for any object u and a formula α, u |=1 α implies u |= α. In-
deed, if u |=1 α, then Γu ⊆ ||α||. Since u ∈ Γu, it holds u |= α as required. As
a consequence, (g3) |u|1 ⊆ |u|. In the next step, we prove (g4) ||Pr||(1,1) = U
iff ||Pr|| = U (recall that ||Pr|| = ||Pr||(c,1)). “⇒” Assume ||Pr||(1,1) = U .
Hence, for every object u, Pr ⊆ |u|1 by the definition of (1, 1)-meaning. In
virtue of (g3), Pr ⊆ |u|. Hence ||Pr|| = U by the definition of meaning. “⇐”
Assume ||Pr|| = U . Hence, for every object u, Pr ⊆ |u| by the definition of
meaning. In other words, ∀u ∈ U.∀α ∈ Pr.u ∈ ||α||, i.e., ∀α ∈ Pr.||α|| = U .
Hence, ∀u ∈ U.∀α ∈ Pr.Γu ⊆ ||α||. Thus, ∀u ∈ U.∀α ∈ Pr.u |=1 α by the
definition of |=1, i.e., ∀u ∈ U.∀α ∈ Pr.α ∈ |u|1, i.e., ∀u ∈ U.Pr ⊆ |u|1.
Hence, ||Pr||(1,1) = U by the definition of (1, 1)-meaning. By (g1), (g2),
and (g4), it holds that (g5) Apl(1)3U = Apl(c,1,1)U . Observe that (g6) for
any x ⊆ U ,

⋂
{Apltx | t ∈ T2} = Apl(1)3x by (e), (f). Next, we show

that (g7)
⋂
{Apl(1)3x | x ⊆ U} = Apl(1)3U . “⊆” is obvious. To prove

“⊇”, consider a rule r ∈ Apl(1)3U . By the definition of (1, 1, 1)-applicability,
U ⊆ ||Pr||(1,1). Hence, for any x ⊆ U , x ⊆ ||Pr||(1,1). Again by the defini-
tion of (1, 1, 1)-applicability, r ∈ Apl(1)3x for every set of objects x. Hence,
r ∈

⋂
{Apl(1)3x | x ⊆ U}. Thus,

⋂
{Apltx | x ⊆ U ∧ t ∈ T2} = Apl(1)3U by

(g6), (g7). Hence, (g) finally follows by (g2), (g5). ut

Some comments can be handy. First, as directly follows from the defi-
nitions of applicability, the (c, 1, 1)-applicability is the same as the classical
applicability. Next, if π2t = π3t = 1, then a rule r is t-applicable to a set of
objects x iff every premise of r is /t-satisfied for x by (a). If π3t = 1, then a
rule r is t-applicable to the whole universe U iff U is the /t-meaning of the set
of premises of r in virtue of (b). By (c), every rule is t-applicable to the empty
set as well as s(0)- and (0)s′-applicable to any sets of objects. If π3t > 0, then
the t-applicability of a rule to {u} is the same as the /t-applicability of the
rule to u by (d). Property (e) states that if t′ is greater than or equal t in the
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sense of �, then every rule t′-applicable to a set of objects x is t-applicable
to x as well.4 It follows from (e) and (f) that Apl(1)3 and Apl(0)3 are the
least and the greatest elements of the partially ordered family of mappings
Aplt, respectively. By (g), the following sets of rules are identical: the set of
all rules t-applicable to all sets of objects for each t ∈ T2; the set of all rules
(1, 1, 1)-applicable to U ; the set of all rules (c, 1, 1)-applicable to U ; and the
set of all rules of which every premise is satisfied for each object of U . Hence,
axiomatic rules (i.e., rules without premises) are t-applicable to every set of
objects for each t ∈ T2 since ||∅|| = U . In virtue of (h), if π2t = 1 and a rule r′

is t-applicable to a set of objects x, then every rule of which premises are also
premises of r′ is t-applicable to x as well. By (i), if π2t = 1, π3t > 0, and some
premise of a rule r is π1t-unsatisfiable, then r is t-applicable to the empty
set only. Recall that RIFs are quasi-standard in cases (j), (k). (j) states that
the property of being inapplicable (resp., applicable) in the sense of Aplt is
invariant under adding (removing) objects for which sets of premises of rules
are /t-unsatisfiable. Finally, (k) says that the property of being inapplicable
in the sense of Aplt is invariant under removing objects for which sets of
premises of rules are /t-satisfiable.

5 Summary

The aim of this paper was to further analyze rough applicability of rules.
We generalized the fundamental concept of graded applicability in two ways,
where, nevertheless, all premises of a rule were treated on equal terms. In
the future, rules with premises partitioned into classes will be of interest.
Applicability is only one aspect of application of rules. An analysis of the
results of rough application and the question of rough quality of rules are
of importance as well. The latter problem is closely related to propagation
of uncertainty. Obviously, not all concepts of rough applicability can prove
useful from the practical point of view. Nevertheless, some of them deserve our
attention as they seem to describe formally certain forms of soft applicability
of rules, observed in real life situations.
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