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Abstract. We discuss the problems of spatio-temporal reasoning in the
context of hierarchical information maps and approximate reasoning net-
works (AR networks). Hierarchical information maps are used for rep-
resentation of domain knowledge about objects, their parts, and their
dynamical changes. They are constructed out of information maps con-
nected by some spatial relations. Each map describes changes (e.g., in
time) of states corresponding to some parts of complex objects. We dis-
cuss the details of defining relations between levels of hierarchical infor-
mation maps as well as between parts satisfying some additional con-
straints, e.g. spatial ones.

1 Introduction

One of the forms of data representation is an information system, where each
investigated object is described by means of some attributes (features). Once
some reflexive binary relation on a set of objects is given (e.g., a neighbourhood
relation), one can consider new information systems with more complex objects
that are clusters (clumps) of objects determined by this relation. In this case,
the attributes reflect some more general properties of objects, i.e., properties of
sets of objects. This approach is typical for time series analysis, where attributes
(features) are defined on the basis of relevant windows [10]. The chosen neigh-
bourhoods and their properties should make it possible to induce the high quality
approximations of a given concept. Observe that there are two problems in this
approach: discovery of relevant neighbourhoods of objects and their properties.
These are key problems of spatio-temporal data mining [3].1

In this paper, we extend this approach to the case of information maps and
hierarchical information maps, where unstructured objects are substituted by
more complex information granules corresponding to structured objects evolving
in time. The paper is a continuation of [15,16,7].

We emphasise that in the case of modelling of structured objects the infor-
mation granulation, in passing from a lower level of a hierarchy (defined by the
structure of an object) to a higher one, may be performed, e.g., by indiscerni-
bility or similarity relation. Hierarchical information maps make it possible to
model information granules relevant for the target tasks by taking into account
the functionality that the information granules should possess.
1 See [11] for recent issues on modelling of spatio-temporal data.
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2 Preliminaries

In the paper, we use the notation of rough set theory [6,4]. In particular, by
A = (U, A) we denote an information system with the universe U of objects and
the attribute set A. Each attribute a ∈ A is a function a : U → Va, where Va is the
value set of a. For a given set of attributes B ⊆ A, we define the indiscernibility
relation IND(B) on the universe U that partitions U into classes of indiscernible
objects. We say that objects x and y are indiscernible with respect to B if and
only if a(x) = a(y) for each a ∈ B.

Decision tables are denoted by A = (U, A, d), where d /∈ A is the decision
attribute. The decision attribute d defines partition of the universe U into de-
cision classes. An object x is inconsistent if there exists an object y such that
xIND(A)y, but x and y belong to different decision classes, i.e., d(x) �= d(y).
The positive region of a decision table A (denoted by POS(A)) is the set of all
consistent objects.

Any pair (A, R), where A = (U, A, d) is a decision table and R is a set of
binary and reflexive relations over U × U , is called a relational decision table.
For any R ∈ R by R(x) we denote the neighbourhood of an object x, i.e., the
set {y ∈ U : xRy}. One can consider a new decision table AR = (UR, AR, dR)
obtained from (A, R), where UR = {(x, R(x)) : x ∈ U} is a family of object
neighbourhoods, AR is a set of attributes describing properties of objects and
their neighbourhoods, and, e.g., dR((x, R(x))) = d(x). In this way, one can con-
sider attributes whose values depend on the context in which objects occur, i.e.,
on neighbourhoods of objects rather than on objects only. This approach is typ-
ical for time series analysis, where attributes (features) are defined on the basis
of relevant windows [2,1,10]. It is also used in multi-criteria decision making (see,
e.g., [17]). The chosen neighbourhoods and their properties should make it pos-
sible to induce high quality approximations of a given target concept. Observe
that there are two problems in this approach: discovery of relevant neighbour-
hoods of objects and properties of such neighbourhoods defined by means of
some new attributes. The former problem is related to the selection of R as well
as R ∈ R for any object, whereas the latter is based on discovery of a relevant
language of formulas expressing properties of neighbourhoods and next on the
selection of relevant formulas from this language. Discovery of relevant neigh-
bourhoods and their properties for proper object approximation is a key problem
of spatio-temporal data mining [3]. From such a decision table there can be de-
rived concept approximation classifiers by using strategies developed in rough
sets or other areas like machine learning and pattern recognition.

3 Information Maps

3.1 Basic Definitions

Information maps [14,16] are usually generated from experimental data (e.g., in-
formation systems or decision tables) and are defined by some binary (transition)
relations on the set of states. In this context a state consists of an information
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Fig. 1. (a) An information map; (b) An information map of an information system

label and the corresponding information extracted from a given data set. This
kind of structure provides basic models over which one can search for relevant
patterns for many data mining problems [14,16].

An information map A is a quadruple

A = (E,≤, I, f), (1)

where E is a finite set of information labels, ≤ ⊆ E × E is a binary transi-
tion relation on information labels, I is an information set and f : E → I is
an information function associating any information label with the correspond-
ing information. In Fig. 1a, we present an example of information map, where
E = {e1, e2, e3, e4, e5}, I = {f(e1), f(e2), f(e3), f(e4), f(e5)}, and the transition
relation ≤ is a partial order on E.

A state is any pair (e, f(e)), where e ∈ E. The set {(e, f(e)) : e ∈ E} of all
states of A is denoted by SA. The transition relation on information labels can
be extended to the relation on states, e.g., in the following way: (e1, i1) ≤ (e2, i2)
if and only if e1 ≤ e2. A path in A is any sequence s0s1s2 . . . of states such that
si ≤ si+1 for every i ≥ 0, and if si ≤ s ≤ si+1 then s = si or s = si+1.

3.2 Information Maps of Data Tables

Any information system A = (U, A) defines its information map as a graph
consisting of nodes that are elementary patterns generated by A, where an ele-
mentary pattern (or information signature) InfB(x) is a set {(a, a(x)) : a ∈ B}
of attribute-value pairs over B ⊆ A consistent with a given object x ∈ U . Thus,
the set of labels E is equal to the set INF (A) = {InfB(x) : x ∈ U, B ⊆ A}
of all elementary patterns of A. The relation ≤ is defined in a straightfor-
ward way, i.e., for e1, e2 ∈ INF (A), e1 ≤ e2 if and only if e1 ⊆ e2. Hence,
relation ≤ is a partial order on E. Finally, the information set I is equal to
{Ae : e ∈ INF (A)}, where Ae is a sub-system of A with the universe Ue equal
to the set {x ∈ U : ∀(a, t) ∈ e a(x) = t}. Attributes in Ae are attributes from A

restricted to Ue. The information function f mapping INF (A) into I is defined
by f(e) = Ae for any e ∈ INF (A) (see Fig. 1b).

One can consider other information functions for information maps over data
tables. Such a function can be a kind of “view”of dependencies in the data table.
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Then, for example, f(e) can be equal to the set of all dependencies in Ae that
have sufficient support and confidence.

3.3 Decision Tables over Information Maps

One of the typical schemes of object classification is based on the analysis of
decision tables. From the given information about an object (object pattern),
we try to classify it relative to a proper decision class. In many cases this scheme
needs to be extended because the context of the information should be consid-
ered together with the information itself. This means that instead of a single
information signature relative to the investigated object x, we also have to ex-
amine some other objects that are in some relation to x. Properties of those
objects can be important in order to extend information about x by information
about the context in which x occurs. In a more complex case, we can consider
states of objects and relations between such states. Temporal relations between
states, in the case of objects changing in time, provide another possible source
of information about the context in which objects occur.

Thus, the scheme of object classification can be as follows. We are given a
decision table. Next, it can be extended by some relations on objects (or values
of attributes) to a relational decision table defining some neighbourhoods of ob-
jects (possibly overlapping each other). Thus, we construct a new decision table,
where objects are pairs (object, object neighbourhood), and attributes describe
properties of the objects in the context of their neighbourhoods.

In the case of information maps, the above idea is generalised to more com-
plex information granules that are pairs (state, state neighbourhood), where
state is a state of a given information map A and state neighbourhood is the
neighbourhood of this state in A. A state can be identified by some information
about an object and it determines some set of objects (a sub-table), e.g., set of
objects indiscernible by means of some attributes. Thus, state neighbourhood
is a much more complex structure than object neighbourhood in the previous
case, because it is a set (defined by transition relation) of sub-tables satisfying
some constraints. Also the attributes of the constructed decision table are more
complex because they express properties of complex neighbourhoods. The deci-
sion attribute is complex as well because it classifies a state, which is a complex
object (in our example – a sub-table). Thus, for a given state s, we can consider,
e.g., the distribution of objects corresponding to s in decision classes as the value
of decision for s.

4 Hierarchical Information Maps

4.1 Spatio-temporal Modelling of Objects

Let us discuss in more detail the possibilities of modelling of objects evaluated
over time. In the simplest case, we can consider separate series of observations:
one series corresponds to one object (see Fig. 2a). Each of the series of observa-
tions can be modelled, e.g., by an information map (see Section 3), where labels
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Fig. 2. States of objects evaluating in time

correspond to time indices and information to object signatures (for details see
[16]). To make the modelling more general, one can combine different series to
one more complex information map by joining those states that carry the same
information. In this case, we lose some information about the observed objects,
however, the model is more general, hopefully still relevant, and applicable to a
potentially larger number of cases (see Fig. 2b).

Another possibility is to construct an information map where states denote all
the possible states of observed objects (defined by means of some properties, e.g.,
“moving car”, “stopped car”) and the transition relation describes the possible
next (previous) states if some temporal relation is additionally satisfied. The
main difference here is that the states are not labelled by time indices but by
some properties of objects. Thus, the space of states can potentially be reduced
to a significant degree.

Yet another case of perceiving objects is when we consider their structure.
Structured (complex) objects can consist of some parts constrained by some rela-
tions of different nature, e.g., spatial relations. The parts can be built from some
simpler parts and therefore the structure can be hierarchical with many differ-
ent levels. The relation object-part corresponds in most cases to some spatial
relation. These problems are considered in rough-mereological approach [9].

The combination of the last two cases, i.e., structured objects evaluating in
time, gives spatio-temporal objects. For modelling of such objects we can use
hierarchical information maps. Each level of such a map models temporal be-
haviour of the corresponding parts. The levels are connected by spatial relation,
e.g., object-part relation relative to the actual context (state of a complex ob-
ject and states of its parts) (see Fig. 3). The hierarchical information maps are
presented in more detail in the following section.

Especially interesting in modelling of object changes are rules that describe
how changes of some features (attributes) influence changes of some other ones.
Let us consider an example related to information maps. Assume that with any
label e there is associated an information f(e) which is a pair (T1(e), T2(e)) of
theories representing some view on knowledge represented in Ae consisting of
the set of dependencies between conditional and decision attributes in the data
table Ae, respectively. Such a view can consist of association rules with sufficient
support and confidence. Assume that e′ is another label (e.g., an extension of e).
Then, one can consider rules making it possible to predict differences between
T2(e) and T2(e′) on the basis of differences between T1(e) and T1(e′). Such rules
are interesting on different levels of hierarchical modelling for spatio-temporal
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Fig. 3. An example of hierarchical information map

reasoning. Moreover, the laws for predicting changes in decisions quite often re-
quire to discover relevant trends of conditional attribute changes (e.g., over some
period of time) from data. We plan to develop algorithmic tools for discovery
of such laws (dependencies) supported by hierarchical modelling. Observe that
in searching for these laws one should, in particular, discover relevant “views” of
sets of dependencies and measures of differences.

4.2 Hierarchical Information Maps

One possibility of modelling structured objects evaluated over time is to use
some multi-level relational structure. A hierarchical information map is an ex-
ample of such a structure. It consists of several levels, each modelling temporal
behaviour of parts from the same level of the object’s structure. Every part
of a complex (structured) object defines its own space of states together with
the corresponding transitions. Thus, on each level we keep several graphs – one
graph for one part. The edges of these graphs are labelled with some temporal
relations, however, they are defined for particular parts. The lowest level of the
map corresponds to elementary (atomic) parts.

We connect the nodes of graphs from adjacent levels by some spatial rela-
tion, defining schemes of constructing a more complex object in a given state
from its parts (which are also in some states). An example is presented in Fig.
3. A complex object in state v1 consists of two parts that are in states x1 and
y1. The same object in state v3 consists of three parts in states x3, y2, and z2,
respectively. With each non-atomic part in some state xi at any level, we can



628 A. Skowron and P. Synak

associate a decision table containing, e.g., information about historical obser-
vations of this part in xi. The rows (objects) of such a system correspond to
different observations.

In a more general case, there can be also given some other relations defined
between parts from the same level, e.g., spatial or temporal, reflecting some
constraints which should be satisfied by parts in given states in order to reason
about more complex object (see Fig. 3). For example, the state of an object
can change from safe to unsafe if its parts are in some particular states and,
additionally, if they are too close each other. Thus, while modelling complex
objects we have to also take into account such relations.

We propose to use labelling of relations linking levels of hierarchical informa-
tion maps. A label can reflect the fact that some parts satisfy some additional
constraint R, or do not satisfy R, or, e.g., do not satisfy any additional constraint
at all. In Fig. 4 we can see a part of hierarchical information map where two
parts x and y constitute a more complex object x⊕ y. There are two additional
constraints defined: relations R and S, denoted by dashed and dotted line re-
spectively. From the map it follows that the state of the complex object x ⊕ y
can depend on the states of parts x and y as well as satisfaction of R or S.

A very important problem is how to check that some complex relation is
satisfied or not. Some simple constrains can be checked directly by using some
predefined formulas. For example, we can consider a spatial relation “too close”
reflecting the fact that two cars are too close each other. Assuming that mea-
surements include location of the cars, we can directly compute the distance and
check whether the relation is satisfied or not.

In a more general case we are unable to check satisfiability of relations directly
and have to learn it from historical observations of objects. For this purpose,
we propose to construct relevant decision tables and to induce classifiers. Let
A = (a1, . . . , an), B = (b1, . . . , bm) be sets of attributes describing parts x and
y respectively, and let R be a binary relation that we want to learn. We can
construct a decision table AR = (X × Y, A ∪ B, dR), where X and Y are all
historical observations of parts x and y respectively; each pair of observations
(xi, yj) ∈ X ×Y is described by a vector (a1(xi), . . . , an(xi), b1(yj), . . . , bm(yj));
and dR is a binary decision attribute taking value 1 if given observation of

 
 

Legend: 
                   R 
                   S 

x⊕y 

x 

y 

Fig. 4. Satisfaction of spatial or spatio-temporal constraints R and S
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parts x and y satisfies the relation R, and 0 otherwise. One can also consider
extraction of new features from A ∪ B to make the approximation of R more
precise. Therefore, for each non-trivial constraint related to parts on a certain
level of information map we need to build separate classifier.

In the case of spatio-temporal constraints we may be required to define more
complex decision tables for classifier’s induction. First of all, we may need to
observe a particular object in time, e.g., in some time window. Then, the set
of attributes has to be extended by features describing dynamical properties of
observed objects. Secondly, new features may have to be extracted. For example,
basing on positions of two parts we can extract a new feature describing distance
between them by using some specialised metric.

The presented structure – multi-level hierarchical information maps – con-
sists of several information maps that are linked together by some relations on
the sets of states. It is important to note that in modelling of such maps we
express properties of states and relations between them using the language of
domain knowledge (e.g., a simplified natural language). Next, using hierarchi-
cal information maps and experimental data one can search for AR networks
(see [15,16]), representing relevant patterns for approximation of complex con-
cepts that appear on different levels of maps. Such AR networks are constructed
along the derivations performed in domain knowledge using the representation
in hierarchical information maps.

4.3 Constructing Higher Levels of Hierarchical Maps by
Information Granulation

In this section we discuss an important role which the relational structure gran-
ulation [13,8] plays in searching for relevant patterns in approximate reasoning,
e.g., approximation patterns (see Fig. 5). For any object x, there is defined a
neighbourhood I(x) specified by the value of the uncertainty function from an
approximation space (see [12]). From these neighbourhoods some other, more
relevant ones (e.g., for the considered concept approximation), should be found.
Such neighbourhoods can be extracted by searching in a space of neighbour-
hoods generated from values of the uncertainty function by applying to them
some operations like generalisation operations, set theoretical operations (union,
intersection), clustering, and operations on neighbourhoods defined by functions
and relations in the underlying relational structure.2 Fig. 5 illustrates an ex-
emplary scheme of searching for neighbourhoods (patterns, clusters) relevant
for concept approximation. In this example f denotes a function with two ar-
guments from the underlying relational structure. Due to the uncertainty, we
cannot perceive objects exactly but only by using available neighbourhoods de-
fined by the uncertainty function from an approximation space. Hence, instead of
the value f(x, y) for a given pair of objects (x, y), one should consider a family of
neighbourhoods F = {I(f(x′, y′)) : (x′, y′) ∈ I(x)× I(y)}. From this family F , a
subfamily F ′ of neighbourhoods can be chosen which consists of neighbourhoods

2 Relations from such a structure may define relations between objects or their parts.
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Fig. 5. Relational structure granulation

with some properties relevant for approximation. Next, a subfamily F ′ can be,
e.g., generalised to clusters that are relevant for the concept approximation, i.e.,
clusters sufficiently included into the approximated concept (see Fig. 5). The
inclusion degrees can be measured by granulation of the inclusion function from
the relational structure.

Using information granulation one can construct from a given information
map a new one at the higher level which is simpler (more compact) but still
sufficient for approximation of complex concepts with a satisfactory quality.

5 Conclusions

In the paper, we have discussed some problems related to hierarchical approxima-
tion of spatio-temporal knowledge by means of hierarchical information maps.
They can help to discover AR networks representing relevant spatio-temporal
patterns from data and soft domain knowledge.

The levels of hierarchical information maps are connected by some spatial
or spatio-temporal relations. Satisfaction of different constraints may lead to
connecting of the same states from one level to different state in the upper level.
We have also discussed the problem of learning such constraints.
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