
HYPERPLANE-BASED NEURAL NETWORKS FOR REAL-VALUED DECISION TABLES

Marcin Szczuka szczuka@mimuw.edu.pl

Dominik ������ slezak@alfa.mimuw.edu.pl

The University of Warsaw
Institute of Mathematics
Banacha 2, PL-02-097 Warsaw, Poland

Abstract: Different approaches to real-valued decision tables are considered. Possible profits of
combining neural networks and hyperplane-based methods are discussed.

1. Introduction
Among other problems in decision support systems the
task of dealing with real-valued cases seems to be one of
key issues. Many approaches have been developed so far.
One quite widely used method is application of neural
networks of some kind. Although this approach is very
powerful computationally, it has some restrictions.
First, one may have difficulties with finding proper layout
of the network (number of neurons or layers, strategy of
learning). Second, network itself does not provide us with
clear interpretation of knowledge it contains.
In both above cases referring to some supporting
techniques is needed. Therefore, in this paper we want to
draw connections between neural networks and other
methods.
At the beginning we introduce the framework for
hyperplane approach to real-valued decision tables, as
stated in [3],[4],[5].
Then, in Section 3, we construct the neural network
corresponding to given hyperplane decision tree ([5]).
Possible variations of this model are discussed in view of
learning and outputs’ interpretation.
Section 4 includes the outline of connections to fuzzy
methods ([2]).
Further profits of combining described techniques are
considered.

2. Basic notions
Let � �� �A � �U A d, be a decision table ([6]) where

� �U u un� 1 , ... , is a finite set of objects called the

universe, � �A f f k� 1 , ... , is a set of real valued

conditional attributes (features) determined on objects
i.e. f Ui : �� for any i k�{ , ... , }1 and d is the decision

� �d U r: , ... ,� 1 . The set of values for attribute f Ai �

is denoted by V fi
, the set of decision values by

� �V rd � 1, ... , .

With this definition we can treat any object ui in our

decision table as a point in affine space � k

 � � � � � �� �P f u f u f ui i i k i� 1 2, , ... ,

for i k�{ , ... , }1 .
Assuming that conditional attributes discern our objects
(points) we define decision classes C C Cr1 2, , ... , as

follows:

� �� �C u U d u ii � � �: for i k�{ , ... , }1

Any hyperplane in � k :

� �� �H x x a x a x ai k
k

k k� �� � � � �1 1 1 0, ... , : ... (1)

for a a ak, , . .. ,1 �� , allows us to define new binary

attribute � �H Ui : ,� 0 1 over the set of objects:

� �

� �
H u

a f u a f u a

a f u a f u ai

k k

k k

()
... ()

... ()
�

� � � �

� � � �

	

�

1 0

0 0
1 1

1 1

 iff

 iff
 (2)

A decision rule is a formula of the form � � �d i ,
where i Vd� and � is a Boolean conjunction of

descriptors i.e. expressions a v� , where a A v Va� �, .

In case of binary attributes produced from hyperplanes,
the decision rules are Boolean, so any set of them can be
represented as the binary tree (see [5]).
As some notions from neural network theory will be used
further, here we provide them. By three layer network we
mean the one containing input, hidden and output layer.
Of those three the input layer contains non-computational
neurons which only broadcast the input signal to second,
hidden layer. All the networks considered are fully
connected. The excitation functions of neurons vary
between layers and are not necessarily the standard
sigmoid. For reference see e.g. [1].

3. Hyperplanes, decision trees and
networks
For decision table with real-valued attributes we can use
hyperplanes to obtain set of binary attributes that allows
us to construct decision rules which approximate decision
classes. The key issue in that approach is the choice of
possibly most relevant hyperplanes. Of course there
should be not too many of them in order to make our
decision process simpler actually. In practice the choice
of such hyperplanes can be made by genetic algorithm as
in [3],[4]. The algorithm mentioned is also able to
generate decision rules which describe decision classes
using hyperplane-generated, binary attributes.
Once the hyperplanes and decision rules are constructed
for given decision table A, we may put them into the
neural network.
PROPOSITION
Let the decision table A, the set of hyperplanes

� �H = H Hm1 , ... , defined over affine space � k and the

set of decision rules R for binary attributes defined by H
be given. Then one can construct three-layer neural
network with n inputs, r outputs and m neurons in hidden
layer, such that it recognizes all objects from U similarly
to given decision rules.
Step 1. The network has k inputs corresponding to
conditional attributes. There is also one additional
constant input called bias. Every input neuron sends its
signal to all neurons in hidden layer.
For every hyperplane form H we construct one neuron in
hidden layer. This neuron has weights equal to
coefficients describing corresponding hyperplane.
Literally, if we have hyperplane like in (1), with
coefficients a a ak, , . .. ,1 , then they are simultaneously the

weights of i-th neuron, where weight a corresponds to the
bias. Such a neuron has then the excitation function
corresponding to binary attribute defined by formula (2),
so the output of neuron is 0 if the inputted point lays
below Hi and 1 in opposite case.

Step 2 For every decision value we construct one neuron
in output layer, so together r outputs from network. Each
output neuron is supposed to give high signal if the point
inputted to the network belongs to corresponding decision
class and low signal if not. To achieve such a behavior of
neuron we will first encode all the decision rules we have
for hyperplane attributes. One possible encoding is the
following:
To any binary attribute Hi we attach weight 2 � i ,

� �i m� 1, ... , . For decision rule from R its code is given

by t tm
m

1
12 2
 � �
� �. .. , where t i =1 if the component

" "Hi � 1 is present in the formula and t i =0 otherwise.

We put it into the network by setting the weights of all
connections coming out of i-th hidden neuron to 2 � i .
With such encoded rules we construct the 0-1 excitation
functions for output neurons. For i-th decision class (i-th
output neuron) this function will be equal 1 iff the
argument is equal to encoded value of any rule supporting
this decision.
ILLUSTRATIVE EXAMPLE
Let us consider the example of iris classification from [7].
There are 150 objects, 3 decision classes, 4 real-valued,
conditional attributes. The data is spliced to 60 (learning
set) and 90 (testing set).
By using previously mentioned genetic algorithm the
accuracy over 97% was achieved with only two
hyperplanes. For each of three decision classes there is
only one supporting rule. So, the corresponding network
has 4 inputs, 2 hidden neurons and three outputs. All
functions in output neurons are characteristic for single
points as there is only one decision rule for each class.
Of course the straight method presented above is quite
artificial. It is also inflexible. The network constructed in
such a way is vulnerable for any kind of disturbed,
imperfect data. It also cannot guarantee good behavior for
new cases. Finally, it is very inconvenient for learning.
Thus, the several changes in presented method can be
introduced to obtain the network with more practical
abilities.
First of them is rather simple; the replacement of step
functions in hidden layer by continuous ones. For
instance, we can take sigmoidal function

� �f x
e x

�
� �

1

1 �

to have values between 0 and 1. By manipulating
functions in hidden layer we allow less restrictive borders
between positive and negative regions. That weakening of
the border corresponds to the fuzzy approach. The
excitation function of each neuron in hidden layer can be
treated as the fuzzy membership function for the set of
points laying above given hyperplane. That second
function, for points laying beneath, is determined
complementary. By adjusting the � coefficient in

sigmoidal functions we are able to decide how sharp the
pass between positive and negative region should be.
The second possible modification is more serious and has
deeper consequences. The excitation function of output
neuron can be changed to some continuous, widely used
one. We propose the sine function f x x() sin()� � � .

The � coefficient allows us to determine the interval of
output values in case we want them to be e.g. between 0
and 2.
To be able to use sine functions we have to posses the
confidence that they will give us proper answers. So, we
have to adjust the weights in output neurons and
introduce some tolerance measure for outputs. In general,

it can be proven that there is no way to adjust the weights
to have exact fitting of encoded rules into minimums and
maximums of sine function. Therefore, we will only
expect that for positive cases corresponding to its
decision class the output neuron will return a value
between 1� �� � and 1� � , where � � 0 is the range of
tolerance.
Obtained flexibility of neuron functions enables to look at
similarities between construction of the network and
algorithm used to generate hyperplanes from new point of
view. Genetic algorithm that we are basing on ([3],[4]) is
constructed in a way that hyperplanes are chosen orderly.
The first chosen is the one potentially most important i.e.
the one that separates possibly largest number of pairs of
points belonging to different decision classes. Therefore
we set our encoding of decision rules according to the
precedence of hyperplanes - the more important
hyperplane, the bigger its weight. It can be seen that for
the most significant hyperplanes, which separate
relatively big number of points from different decision
classes, it is easier to design output neurons paying the
attention mostly to those rules which are to be positively
recognized. Such an approach assures us that if two
encoded rules for different decision classes are very close
to each other as real numbers, then, even if we miss to
choose the proper function discerning them and negative
case will be classified as positive one, the possible losses
would be minor in terms of number of wrongly
recognized objects. It follows the fact that small
differences of encodings correspond to least important (in
terms of the number of discerned objects) hyperplanes.
Further changes we may want to introduce into our
network model are to allow it to learn. With all
modifications proposed above, our network is able to
learn utilizing some version of backpropagation
algorithm.
There are two possible ways of learning in such a
network. We may train only the weights of connections
between hidden and output layers. The weights between
input and hidden layers are taken from hyperplane
equations and do not change. Such a training is equivalent
to searching for encoding of decision rules.
The other way is to perform regular training procedure for
all weights in our network. In that case the information
acquired from algorithm generating hyperplanes and rules
is used only for establishing the network architecture. The
rest, choice of weights in hidden layer which corresponds
to division of attribute value space and in output layer
which corresponds to decision tree is left to the learning
algorithm. The knowledge that comes with hyperplanes
and decision rules may be used as the reference for
network performance benchmark.
The network with some or all above changes may behave
more flexibly but also it may lack some preciseness.
Therefore, we were considering different methods of

naming the final decision. For example, instead of
handling the tolerance, if the network do not give us the
exact answer, then we can accept the neuron with highest
output as the one corresponding to current decision value.
The simple experiments showed that this approach allows
to improve network performance in most cases. However,
it does not enable the network to answer with more than
one output neuron, just like it can be done by
manipulating tolerance thresholds.
It is worth mentioning that for both above methods of
interpreting output sine functions there is no difference
whether we use continuous functions in hidden layer or
not - in case of tolerance thresholds, they must be
adjusted accurately enough, when in case of “the highest
output value” method it is the same for any increasing
excitation functions. The difference occurs when we want
to replace described approaches by some continuous way
of interpreting the answers.

4. The fuzzy connection
In previous section some connections between our
approach and elements of fuzzy set theory were
mentioned. Here we want to point them out more
precisely.
While considering the continuous functions in hidden
layer neurons, we may say that now every neuron
represents some fuzzy variable ([2]). This variable is in
fact fuzzyfied version of binary attribute generated by
hyperplane. The value of output of hidden neuron directly
corresponds to the degree with which the given element
belongs to one of two classes established by hyperplane.
In the first version of our network the calculations done
by output layer are equivalent to performing decision
process based on binary decision rules. This kind of
calculations, done with fuzzy variables and continuos, but
tolerance-equipped functions in output neurons, does not
correspond to so called fuzzy rules yet.
EXAMPLE
If we consider binary decision rule of the form:

� �� � � �� � � �� �H u H u H u d1 4 61 1 0 5� � � � �& &

then the corresponding, then corresponding linguistic rule
for fuzzy approach would be:
“If H1 is large and H4 is large and H6 is small then

decision is 5”
Now, although we have fuzzy membership functions for
states � �H u1 1� , � �H u4 1� and � �H u6 0� , we don’t

give as an answer numerical degree to which d � 5 - the
first method tells us that d is enough 5 to fit in some
tolerance threshold and the second , where the output with
the highest value is chosen, says that d is most likely 5.
In fact, the straightforward relation to fuzzy reasoning
occurs when we treat d as a real function like all other
attributes. Then, there may be several ways of interpreting

network outputs of network according to fuzzy methods.
We want only to point out the some possibilities.
If decision is initially prescaled, then we can perform the
hyperplane and rule search and construct neural network.
By interpreting output neuron answers in fuzzy way we
will be able to return to real-valued decision e.g. by
taking weighted sum of output values. It is worth
remembering that the network may be influenced by the
procedure we want to apply to its outputs. Possible
repercussions should reflect in special adjustment of
weights, response functions in output neurons, or
diversification of learning process.
Just like it could be said in case of considering discrete
decision attributes, there is significant difference between
the way of calculating rules in classical fuzzy approach
and in our network. While the network performs all
calculations in parallel, in fuzzy inference the decision is
reached sequentially. It means that we first consider
consequences of H1 being large and after that go further

to other conditions. This sequential approach can be in
some way reflected by structure of weights in our network
due to potentially bigger influence of signals possessing
larger weights. However, the network may also learn
some other way of encoding decision rules. That fact
justifies the bigger expressiveness of our network. On the
other hand, it determines the border for its interpretation
in terms of hyperplane decision trees.

5. The feedback
In previous sections the usefulness of hyperplanes and
decision rules for construction of neural network has been
discussed. Herein we want to outline possible feedback
profits for hyperplane approach coming from networks.
One important is the possibility to deal with continuous
decision. That ability is very crucial for many real life
applications like e.g. control processes. The generation of
real-valued decision may be done using fuzzy techniques
as mentioned in preceding section. We can also deal with
continuous decision introducing some custom error
function during the process of network training.
Other possible way is to construct the network for
discretized decision and then perform some learning
involving a kind of measure of difference between
discrete and actual values. As this measure we may take
e.g. weighted variance or its modifications.
One more possible profit for hyperplane approach is the
ability of weakening the strict, binary conditions. In many
situations we may face the problem that constraints
introduced through hyperplanes and binary rules are too
sharp. In that case we may construct the network and
then, using some small learning steps, “tune up” the
system to obtain more tolerant and flexible one.
Furthermore, we may consider reassignment of some
hyperplanes by performing the learning of certain parts of
network if the current ones don’t fit. It may save us from

necessity of running genetic algorithm from the very
beginning in order to deal with new situation.

6. Conclusions
We presented the method for establishing neural network
based on knowledge about data coming from genetic
algorithm. The simple experiments showed that network
approach seem to be the good silk glove for iron fist of
hyperplane-generating algorithm. The next task is to
perform some more advanced tests. It will be also
interesting to compare the expressive power or all
mentioned methods. It may also lead to some conclusions
about meaning of knowledge included in certain kind of
neural networks.

References
[1] Fausett L.(1994). Fundamentals of Neural Networks.

Prentice-Hall, Engelwood Cliffs, NJ.
[2] Kruse R., Gebhardt J., Klawonn F. (1994).

Foundations of Fuzzy Systems. Wiley, Chichester.
[3] Nguyen H.S., Nguyen S.H., Skowron A.,(1996).

Searching for Features defined by Hyperplanes. In
Proceedings of ISMIS’96, Lecture Notes in AI 1097.
Springer Verlag, Berlin, pp.366-375

[4] Nguyen H.S., Nguyen S.H., (1996). Some efficient
algorithms for rough Set Methods. In Proceedings of
IPMU’96, Granada, Spain, pp.1452-1456.

[5] Nguyen H.S., Skowron A.,(1995). Quantization of
real value attributes. Rough Set and Boolean
Reasoning Approaches. Proc. of 2nd Joint annual
Conference on Information Sciences. Wrigthswille
Beach, NC, pp.34-37.

[6] Pawlak Z.(1991) Rough Sets: Theoretical aspects of
reasoning about data. Kluwer, Dortrecht.

[7] ftp://ftp.ics.uci.edu/machine-learning-databases/iris
University of California, Irvine.

