## GUHA method and Association Rules

## Jan Rauch University of Economics, Prague, Czech Republic

## Extended abstract

Association rules were introduced in the early 1990's with a goal to better understand the purchase behavior of customers in supermarkets [1]. Transaction data recorded by point-of-sale systems is analysed. We assume there is a set  $I = \{i_1, \ldots, i_n\}$  of possible items of goods and set  $D = \{b_1, \ldots, b_m\}$  of market baskets; it is  $b_i \subset I$  for  $i = 1, \ldots, m$ . An association rule is commonly understood as an expression of the form  $X \to Y$ , where  $X \subset I$ ,  $Y \subset I$  and  $X \cap Y = \emptyset$ . An example of association rule can be {butter, cheese}  $\to$  {bread} expressing that customers who buy butter and cheese also often buy bread.

There are two important measures of interestingness of association rules. The confidence is defined as  $conf(X \to Y) = \frac{\text{number of baskets containing } X \cup Y}{\text{number of baskets containing } X}$  and the support is defined as  $supp(X \to Y) = \frac{\text{number of baskets containing } X \cup Y}{m}$ . A task of mining association rules is understood as a task of finding all association rules  $X \to Y$  satisfying  $conf(X \to Y) \ge minC$  and  $supp(X \to Y) \ge minS$  in a given set of market baskets D. Here minC and minS are user-specified minimum confidence and support. This task is usually solved by the apriori algorithm [1] which has been many times implemented and modified.

The idea of association rules has been later generalized to data in a tabular, attribute-value form. The association rule is understood as an expression  $Ant \rightarrow Con$  where Ant and Con are conjunctions of attribute-value pairs. Additional measures of interestingness of association rules have been defined [2].

However, the concept of association rules was introduced and studied already in 1960s in the framework of development of the GUHA method [3]. Monograph [4] introduces a general theory of mechanized hypothesis formation based on mathematical logic and statistics. Association rules introduced and studied in [4] are general relations  $\varphi \approx \psi$  between general Boolean attributes  $\varphi$  and  $\psi$  derived from columns of an analysed data matrix. The symbol  $\approx$  corresponds to a condition concerning contingency table of  $\varphi$  and  $\psi$ .

If A is a column and  $\alpha$  is a subset of its possible values, then  $A(\alpha)$  is a basic Boolean attribute.  $A(\alpha)$  is true in a row o of a data matrix if a value A(o) of A for the row o belongs to o. If o and o are Boolean attributes, then o, o, o, o, and o, and o are Boolean attributes. Their values are defined in a usual way. The term association rules has been used for relations o and o are o of general Boolean attributes o, o since the association rules were introduced in [1]. A GUHA procedure ASSOC [5] mines for such association rules. It was implemented several times [5, 6].

The boom of association rules in the 1990s was the start of a new effort in the study of association rules  $\varphi \approx \psi$ . The new results can be understood as a logic of association rules [7]. The procedure 4ft-Miner – a new enhanced

implementation of the ASSOC procedure has been developed and a research on automation of data mining with association rules and domain knowledge has been initiated [8, 9]. For more information see papers cited in [5, 7, 8].

The goals of the talk are:

- to introduce basic features of association rules related to market basket analysis
- to present an introduction to the GUHA method and related association rules
- to show examples of applications of the GUHA procedure 4ft-Miner to real data
- to introduce possibilities of automation of dealing with domain knowledge in data mining with association rules
- to present related theoretical results concerning logic of association rules.

## References

- [1] Agrawal R., Srikant R. (1994) Fast Algorithms for Mining Association Rules. Proceedings of the 20th VLDB Conference Santiago, Chile, 1994
- [2] Geng L., Hamilton H.J. (2006) Interestingness Measures for Data Mining: A survey. ACM Comput. Surv. 38, 1-32
- [3] Hájek P., Havel I., Chytil M. (1966) The GUHA method of automatic hypotheses determination, Computing 1 293-308.
- [4] Hájek, P., Havránek, T. (1978) Mechanising Hypothesis Formation Mathematical Foundations for a General Theory. Springer, Berlin Heidelberg New York
- [5] Hájek, P., Holeňa, M., Rauch, J. (2010) The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76, 34–48
- [6] Ralbovský, M., Kuchař, T. (2009) Using Disjunctions in Association Mining. In: Perner, P. (ed.) Advances in Data Mining, pp. 339-351. Springer, Heidelberg
- [7] Rauch, J. (2013) Observational Calculi and Association Rules. Berlin: Springer-Verlag, 296 pp.
- [8] Rauch, J. (2015) Formal Framework for Data Mining with Association Rules and Domain Knowledge – Overview of an Approach. Fundamenta Informaticae, 137 No 2, pp. 1–47
- [9] Šimůnek, M. (2014) LISp-Miner Control Language description of scripting language implementation. Journal of System Integration, 5 No 2, http://www.si-journal.org/index.php/JSI/article/view/193