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1 Introduction

A decision system D in the sense of Pawlak [6] is a tuple 〈U,A,d〉, where U is a finite set of objects and
A a finite set of attributes or features. Each a ∈ A is considered as a function with domain U and some
range Va. The attribute d 6∈ A is the decision attribute. A nonempty subset B of A is called discerning
(with respect to d), if b(x) = b(y) implies d(x) = d(y) for all x,y ∈U,b ∈ B. D is called consistent if it
has a discerning set of attributes. A minimal discerning set is called a decision reduct or simply reduct. In
traditional rough set theory, feature selection via reducts has been an important area. As finding reducts
is computationally unfeasible [7], many methods of finding feature sets with an acceptable quality of
classification have been proposed within classical rough set theory, see, for example, [1,5,8].

Recently, Ślȩzak and Janusz [9] proposed to take into account not only the horizontal reduction of in-
formation by feature selection, but also a vertical reduction by considering suitable subsets of the original
set of objects. Thus, the aim is to find areas in the two dimensional Object × Attribute plane which are in
some sense best suited for classification. This leads to the following definition: A (decision) bireduct is a
pair 〈B,X〉 such that B⊆ A,X ⊆U and

R1. For all b∈B,x,y∈X , b(x) = b(y) implies d(x) = d(y); in this case, we write BVX d. (B is discerning
all elements of X)

R2. If C ( B, there are x,y ∈ X such that c(x) = c(y) for all c ∈C and d(x) 6= d(y). (Minimality of B with
respect to X)

R3. If X ( Y , there are x,y ∈ Y such that b(x) = b(y) for all b ∈ B and d(x) 6= d(y). (Maximality of X
with respect to B)

Decision rules now can be obtained as in classical rough set theory by restricting the scope of the
quantifiers to the parts of a bireduct 〈B,X〉. Bireducts – which are consistent on their object set – may
be viewed as inducing approximate rules on the whole object set U . As finding (optimal) bireducts is
NP – hard, obtaining optimal solutions for this kind of problems is computationally intractable and thus
heuristic methods are required for bireduct discovery in realistic time. In our present situation genetic
algorithms (GAs) will be our method of choice for finding bidirects.

A GA is a search heuristic that imitates the process of natural selection [3,2]. Each of the chromo-
somes in the population is subjected to an evolutionary process until a suitable solution is found or the
stopping condition is met. The chromosomes are then subjected to an iterative evolutionary process, that
is, in each generation, fitness evaluation of each chromosome is done, and then the genetic operations,
crossover, mutation and selection are applied on the chromosomes until the termination condition is met.
In our work, tournament selection with elite retention is used to perform fitness-based selection. The order
crossover (OX) [2] and the reciprocal exchange mutation genetic operations were used. A goal here is to
minimize the number of attributes and maximize the number of objects that attributes are valid for, thus
making it a multi-objective optimization problem and thus we proposed a multi-objective GA (MOGA)
approach that uses Pareto Ranking [2] fitness evaluation strategy. By modifying the algorithm proposed



in [9], we got the algorithm for finding bireduct for provided GA chromosome. After our MOGA Sys-
tem generate all bireducts for the provided dataset we pass the bireducts to our Rough Sets System, that
generates decision rules based on bireducts and applies it to the testing dataset.

2 Experimental discussion and conclusions

The Breast Cancer Wisconsin (Diagnostic) dataset from UCI Machine Learning Repository [4] which has
569 instances with 32 attributes was used. Cross-validation technique was employed where 512 instances
were used for training and 57 instances for testing, using various empirically established GA parameters
and performed 20 independent runs. To generate bireducts our MOGA system was used. The prediction
accuracy for each run, as well as the number of bireducts used and total number of correct predictions
was established whereby the average prediction accuracy over all 20 runs is 97%. When evaluating the
the number of attributes and number of objects in each bireduct for each run received by using the MOGA
system, it was shown that the system was able to significantly reduce the number of attributes without
much reduction of the number of objects. A further analysis evaluated whether there is any dependency
between the number of bireducts used in each run and the prediction accuracy. It was found that there is
not significant difference in the number of bireducts used in each run and it does not affect the prediction
quality.

In conclusion, following the work started by Ślȩzak and Janusz [9], we proposed a new approach to
generate bireducts using a multi–objective GA. The Pareto ranking scoring used in the GA is advanta-
geous over a commonly used weighted approach for multi-objective optimization as it precludes the need
for search for suitable weights a priori. Thus, compared to the research mentioned before, we do not need
to provide the ratio value to the system, change it, and generate a huge amount of bireducts with different
attributes/objects ratios. We were able to reduce the number of bireducts necessary for receiving a good
prediction accuracy by using better quality bireducts provided by MOGA. Although the current results
are encouraging, further analysis is underway using various data sets, as well as carrying out an empirical
study comparing Pareto ranking fitness evaluation with other fitness evaluation techniques, in addition to
incorporating various genetic operators.
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9. Ślȩzak, D., Janusz, A.: Ensembles of bireducts: Towards robust classification and simple representation. In: Kim,
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