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Abstract

In this paper we generalize a simple notion of elementary granules
represented by attribute value vectors to the case of hierarchical granules.
We claim that in many application areas related to knowledge discovery
and data mining there is a need for algorithmic methods to discover much
more complex information granules and relations between them than in-
vestigated so far. We discuss examples of information granules and we
consider two kinds of basic relations between them, namely inclusion and
closeness. The relations between more complex information granules can
be defined by extension of the relations defined on parts of the information
granules.
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1 Introduction

Last years saw a rapid growth of interest in so-called granular computing. It
is geared toward representing and processing basic chunks of information. A
form of granular computing was introduced by Zadeh. Granular computing has
grown out of studies of fuzzy sets and rough sets. Zadeh defines information
granulation as follows:

”Information granulation involves partitioning a class of objects (points) into
granules, with a granule being a clump of objects (points) which are drawn to-
gether by indistinguishability, similarity or functionality.” Zadeh also introduced
the following terms related to information granules: ”computing with words”,
”granular computing” and ”from measurements to perception”. We follow a
rough set way of constructing information granules.



The theory of rough sets provides a powerful foundation for discovery of
important regularities in data and for objects classification. In recent years
numerous successful applications of rough set methods for real-life data have
been developed (see e.g. [7], [8], [6])-

We will now describe in some detail rough set models. Rough set approach
has been used in a lot of applications aimed to description of concepts. In most
cases only approximate descriptions of concepts can be constructed because of
incomplete information about them. Let us consider a typical example for clas-
sical rough set approach when concepts are described by positive and negative
examples. In such situations it is not always possible describe concepts exactly,
since some positive and negative examples of the concepts being described inher-
ently can not be distinguished one from another. Rough set theory was proposed
[7] as a new approach to vague concept description from incomplete data. The
rough set approach to processing of incomplete data is based on the lower and
the upper approximation. The rough set is defined as the pair of two crisp sets
corresponding to approximations. If both approximations of a given subset of
the universe are exactly the same, then one can say that the subset mentioned
above is definable with respect to available information. Otherwise, one can
consider it as roughly definable. Suppose we are given a finite non-empty set U
of objects, called the universe. Each object of U is characterized by a description
constructed, for example from a set of attribute values. In standard rough set
approach [7] introduced by Pawlak an equivalence relation (reflexive, symmetric
and transitive relation) on the universe of objects is defined from equivalence
relations on the attribute values. In particular, this equivalence relation is con-
structed assuming the existence of the equality relation on attribute values.
Two different objects are indiscernible in view of available information, because
with these objects the same information can be associated. Thus, information
associated with objects from the universe generates an indiscernibility relation
in this universe. In the standard rough set model the lower approximation of
any subset X C U is defined as the union of all equivalence classes fully included
in X. On the other hand the upper approximation of X is defined as the union
of all equivalence classes with a non-empty intersection with X.

In real data sets usually there is some noise, caused for example from impre-
cise measurements or mistakes made during collecting data. In such situations
the notions of ”full inclusion” and ”non-empty intersection” used in approxima-
tions definition are too restrictive. Some extensions in this direction have been
proposed in the variable precision rough set model.

One of the problems we are interested in is the following: given a subset
X C U or a relation R C U x U, define X or R in terms of the available
information. We discuss an approach based on generalized approximation spaces
introduced and investigated in [9]. We combine in one model not only some
extension of an indiscernibility relation but also some extension of the standard
inclusion used in definitions of approximations in the standard rough set model.

There are several modifications of the original approximation space definition
[7]. The first one concerns the so called uncertainty function. Information about
an object, say z is represented for example by its attribute value vector. Let us



denote the set of all objects with similar (to attribute value vector of z) value
vectors by I (z). In the standard rough set approach [7] all objects with the
same value vector create the indiscernibility class. The relation y € I () is in
this case an equivalence relation. The second modification of the approximation
space definition introduces a generalization of the rough membership function.
We assume that to answer a question whether an object = belongs to an object
set X we have to answer a question whether I (z) is in some sense included in
X.

In the presented paper we generalize a simple notion of elementary granules
represented by attribute value vectors as well as closeness (inclusion) relation to
the case of hierarchical granules representing concepts. We claim that in many
application areas related to knowledge discovery and data mining there is a need
for algorithmic methods to discover much more complex information granules
and relations between them than investigated so far. We discuss examples of
information granules and we consider two kinds of basic relations between them,
namely (rough) inclusion and closeness. The relations between more complex
information granules can be defined by extension of the relations defined on
parts of the information granules.

2 Information Granules and Tolerance Rough
Sets

We present general definition of an approximation space [9], [11] which can be

used for example for introducing the tolerance based rough set model and the

variable precision rough set model.
For every non-empty set U, let P (U) denote the set of all subsets of U.

Definition 1 A parameterized approzimation space is a system
ASy ¢ = (U,Iy,vs), where

e U is a non-empty set of objects,

e Iy : U — P(U) is an uncertainty function,

e y3: P(U)x P(U)— [0,1] is a rough inclusion function,
and #,$ are denoting vectors of parameters.

The uncertainty function defines for every object z a set of similarly de-
scribed objects (elementary granule). A constructive definition of uncertainty
function can be based on the assumption that some metrics (distances) are
given on attribute values. For example, if for some attribute a € A a metric
0o+ Vo x V, — [0, 00) is given, where V, is the set of all values of attribute a
then one can define the following uncertainty function:

y € I]* (z) if and only if 6, (a (2) ,a(y)) < fa(a(2).a(y)),



where f, : V, x V, = [0,00) is a given threshold function.

A set X C U is definable in ASy ¢ if and only if it is a union of some values
of the uncertainty function.

The rough inclusion function defines the degree of inclusion between two
subsets of U [9].
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The function v, (X,Y) = fi4 (vsrr (X,Y)), where

0 if 0<t<l
fra@) =3 L if I<t<u
1 if t>u
and 0 <! < u < 1 is an example of a rough inclusion for the variable
precision rough set model.
The lower and the upper approximations of subsets of U are defined as
follows.

Definition 2 For an approzimation space ASy ¢ = (U, I4,vs) and any subset
X C U the lower and the upper approximations are defined by

LOW (ASy 4, X) ={z €U :vg (Is (z),X) =1},

UPP (ASy4,X) ={z € U :vg (I4 (z),X) > 0}, respectively.

Approximations of concepts (sets) are constructed on the basis of background
knowledge. Obviously, concepts are also related to unseen so far objects. Hence
it is very useful to define parameterized approximations with parameters tuned
in the searching process for approximations of concepts. This idea is crucial
for construction of concept approximations using rough set methods. In our
notation #,$ are denoting vectors of parameters which can be tuned in the
process of concept approximation.

3 Hierarchical System of Information Granules

In this section we construct a system of granules based on a given data table.
We introduce syntax, semantics, inclusion and closeness of information granules.

We present hierarchical system of information granules based on the follow-
ing four elements (see Figure 2):

e eclementary granules corresponding to indiscernibility classes in the stan-
dard rough set model and to tolerance classes in the tolerance rough set
model,

e decision rules,
e sets of decision rules,

e tolerance elementary granules.
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3.1 Syntax and Semantics of Information Granules

In this subsection, we will consider several general kinds of information granules.
We present now their syntax and semantics. In the following subsection we
discuss the inclusion and closeness relations for information granules.

Syntax and semantics of elementary granules.

In an information system I.S = (U, A), elementary granules are defined by
conjunctions of selectors (descriptors). For example a € V; and b € V5, where
a,be A

For example, the meaning of an elementary granule a € V3 Ab € V5 is defined
by

laeVinbeVs|;g ={x€U:a(x) e Vi & b(x) € Va}.

Syntax and semantics of decision rules.

Let IS be an information system and let («, 8) be a new information granule
received from the rule if a then § where «, 3 are elementary granules of IS.
For example, one can consider rule of the form ifa € V; and b € V5 then d = 1.

The semantics ||(a, 8)| ;¢ of (o, ) is the pair of sets (||a||;g,|B]l;g) - If the
right hand sides of rules represent decision classes than among parameters to
be tuned in classification is the number of conjuncts on the left hand sides of
rules.

Syntax and semantics of sets of rules.

Assume that for some k£ > 0 there is a set of decision rules Rule_Set =
{(aiaﬂi) 1= 117k}

The semantics of Rule_Set is defined by

|Rule_Setll g = {ll(a, Bi)llyg i = 1,..., k}.

Syntax and semantics of tolerance elementary granules.

One can consider extension of elementary granules defined by tolerance re-
lation. Let IS = (U, A) be an information system and let 7 be a tolerance
relation (i.e. binary relation, which is reflexive and symmetric) on elementary
granules of I.S. Any pair («, 7) is called a T-elementary granule. The semantics

(e, 7)||;5 of (c,T) is the family {||5]|,5 : (5,a) € T}.

3.2 Inclusion and Closeness of Information Granules

In this subsection we will discuss inclusion and closeness of different information
granules introduced in the previous subsection. Let us mention that the choice
of inclusion (closeness) definition depend very much on area of application and
data analyzed. This is the reason that we have decided to introduce a separate
subsection with this more subjective part of information granule semantics.
The inclusion relation between granules G,G' of degree at least p will be
denoted by v, (G,G") . Similarly, the closeness relation between granules G, G’
of degree at least p will be denoted by cl, (G,G’) . By p we denote a vector of
parameters (e.g. positive real numbers).
Inclusion and closeness of elementary granules.



Figure 3: Overlapping Range 7, for Two Intervals [v1, v2] and [v], v5]

Let us consider for some real valued attribute a two elementary granules
a € [v1,v2] and a € [v], v}], where vy, v, 07, v} are real numbers and we assume
that v; < vy and v} < v.

We define the overlapping range r, (see Figure 3) for two intervals [vy, v2]
and [v],v5] by the following formula

ra([v1, v2l, [v1, v5]) = max({min({vy,v5}) — max({vy,v1}),0}).
Elementary granule a € [v1,v2] is included in elementary granule a € [v], v4]

in degree t, (in symbols, v, (a € [v1,v2],a € [v],v}])) if and only if

’f‘a([’U1,U2], [Uivvé])
V2 — U1

> t,.

Two elementary granules a € [v1,v2] and a € [v],v5] are close in degree t,
(in symbols, clt, (a € [v1,v2],a € [v],v5])) if and only if

l(ra([vlaUQ]a [’Ui,’l)é]) + Ta([Ul,’Uz], [’Uiavé])) >

t
! ! - ra-
2 V9 — U1 Uy — U]

Inclusion and closeness of decision rules.

Let us consider two decision rules Rule and Rule’ with the same decision,
for example:

Rule :if a € [v1,v2] and ... thend =1,

Rule' : if a € [v],v)] and ... thend =1 .

Let Ague and Apgye be sets of attributes occurring in the if part of Rule
and Rule’, respectively.

Rule is included in Rule' in degree (t,{t, : @ € Arue N ARue }) if and only
if

card({a € Aguie N ARuer = 1, (a € [v1,v2],a € [v],v5])}) -
card(ARule u ARule’) =

Two rules Rule and Rule' are close in degree (t,{t, : @ € ARue N ARuie’ })
if and only if



Figure 4: Inclusion for Sets G, H of Decision Rules

CCLTd({a c ARule N ARule’ : Clta (Cl S ['Ul,'UQ]aa € [’Uiﬂvé])}) >t
card(Arue U ARute) -

Inclusion and closeness of sets of rules.

The inclusion of Rule_Set in Rule_Set' can be defined by

I/tlf, (Rule_Set, Rule_Set') if and only if for any Rule € Rule_Set there is
Rule' € Rule_Set' for which thf, (Rule, Rule')

Granules Rule_Set, Rule_Set' can be treated as close in a degree at least ¢
(in 1S) if and only if there exists a relation rel between sets of rules Rule_Set
and Rule_Set' such that:

1. For any Rule € Rule_Set there is Rule’ € Rule_Set’ such that
(Rule, Rule") € rel and Rule is close to Rule’ (in 1) in degree at least ¢.

2. For any Rule' € Rule_Set' there is Rule € Rule_Set such that
(Rule, Rule") € rel and Rule is close to Rule’ (in 1S5) in degree at least ¢.

Inclusion for sets G, H of decision rules specified by inclusion of their elements
is symbolized in Figure 4.
Inclusion and closeness of tolerance elementary granules.

For tolerance elementary granules, i.e., granules of the form (a, 1), (8, 7) one
can consider the following inclusion measure:



l/tlf, ((a, 7) (B, 7)) if and only if l/tlf, (o', ') for any o', ' such that (a, o) € 7

and (8,8') € 7.

The closeness measure for tolerance elementary granules is defined by:
ciy ((a,7) (8,7)) if and only if /2 (. 7) (8,7)) and v{} ((B,7) (a, 7).

Conclusions

Our approach can be treated as a step towards understanding of complex in-
formation granules and their role in knowledge discovery. We have discussed
information granule syntax and semantics as well their inclusion and closeness.
Several examples of information granules have been presented. We have shown
that some higher order patterns, important for knowledge discovery and data
mining are expressible by means of complex information granules.
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