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Chapter 1

Towards Granular Multi-Agent
Systems

1.1 Introduction

Information processing in intelligent systems, in particular in multi-agent
systems, needs new soft-computing paradigms. The solutions derived by
such systems should satisfy a given specification not necessarily exactly
but up to a satisfactory degree. One can expect that due to such more
relaxed specification constraints the robust solutions for complex problems
can be derived efficiently by methods based on these new paradigms.

One of such recently emerging paradigm is Granular Computing based
on rough set and rough mereological approaches (see, e.g., Zadeh and
Kacprzyk, 1999; Zhong et al, 1999; Lin, 1998, Polkowski and Skowron,
1999a, 2001a, 2001b; Skowron and Stepaniuk, 2001a; Nguyen et al, 2001;
Skowron, 2001) as a way to achieve Computing with Words (see, e.g.,
Zadeh, 1996, 2001; Zadeh and Kacprzyk, 1999). Granular computations
are performed on information granules representing vague and complex
concepts delivered by agents engaged in, for example, knowledge repre-
sentation, communication with other agents, and reasoning. Our approach
is related to logical aspects of perception (see, e.g., Zadeh, 2001).

Specifications of complex tasks are often formulated in words, phrases or
more complex texts of a natural language. Hence, the following main prob-
lem arises: if and how can an information granule, in a sense, sufficiently
close to the target information granule G: representing the task specifi-
cation, be constructed from input information granules (e.g., representing
sensor measurements).

One of the important problems is related to the construction of an inter-
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face allowing knowledge acquisition agents (KA-agents) to acquire knowl-
edge from customer-agents (CA-agents), who specify a task. The aim is to
induce a satisfactory approximation Gy of the target information granule
G, in the language of KA-agents, i.e., an information granule Gy, sufficiently
close to (or included in) the target information granule G;. Hence, some
tools for expressing inclusion and proximity (closeness) of information gran-
ules measured by the degree of proximity are needed. For this purpose we
use rough sets (see, e.g., Pawlak, 1991; Komorowski et al, 1998) and rough
mereology (see, e.g., Polkowski and Skowron, 1996a, 1996b, 1998a, 1999a).
The interface construction should be supported by background knowledge
(in particular, by ontology of concepts) and experimental data.

An information granule G sufficiently close to the information granule
Gy, delivered by KA-agents should be constructed from input information
granules (representing, e.g., sensor measurements). In the search for gran-
ule G, relevant operations and inclusion (closeness) measures on informa-
tion granules should be discovered and used. The granule G is constructed
from basic components defined by information granule calculi. Any such
calculus consists of components such as (i) elementary input information
granules, (ii) operations on information granules, (iii) relations of inclu-
sion and proximity measured by the proximity degree between information
granules, and (iv) schemes of information granule construction which can
be treated as approximate reasoning schemes (AR-schemes, for short) on
information granules.

Elementary information granules together with inclusion and proximity
relations between such granules are primitive constructs in granule con-
struction. Higher level constructs, like information granules and related
inclusion (closeness) relations, can be defined from previously constructed
lower level constructs using relevant operations.

Fusion operations are important operations on information granules.
They are based on negotiation schemes for resolving conflicts between agents,
delivering arguments of operations. More complex operations are defined
by robust AR-schemes. Such schemes are obtained by approximate reason-
ing rules and methods for their composition, dependent on available data
and background knowledge. The robustness of AR-schemes means that the
closeness (inclusion) of constructed granules is preserved in a satisfactory
degree under small deviations of input granules (or operation parameters
used for the granule construction). The robustness of the target construc-
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tion can be deduced from the robustness of their sub-constructions, if some
constraints for composition are satisfied. The robust AR-schemes should
be extracted from experimental (e.g., sensory) data or/and background
knowledge rather than from classical deduction mechanisms.

The AR-schemes are parameterized. Relevant information granules are
constructed by tuning AR-scheme parameters. There are several kinds of
parameters tuned in the process of searching for relevant information gran-
ules. Some of them come from approximation spaces of agents that make it
possible to obtain a proper generalization degree of the granule constructed
in the inductive reasoning. Other parameters are related to agent teams
and are used to tune measures of inclusion (closeness) between information
granules and to tune propagation mechanisms of the inclusion (closeness)
degrees along the AR-schemes. The AR-schemes in multi-agent systems
can be treated as higher order neural networks, called rough neural net-
works, performing operations on information granules instead of numbers.
One of the main problems of a new Rough-Neuro Computing paradigm is
to develop methods for inducing rough neural networks.

In this paper, we outline an approach to the above mentioned problems.
Our approach is based on the foundations of a calculus on information gran-
ules developed by means of rough set and rough mereological approaches.
Its aim is to create a methodology and tools for solving a wide class of com-
plex problems ranging from the identification of road traffic situations by
an unmanned aerial vehicle (see, e.g., www page address of WITAS project
in the bibliography) to problems of text data mining in the Internet (see,
e.g., Skowron, 2001; Kargupta and Chan, 2001).

1.2 Information Granule Systems and Parameterized Ap-
proximation Spaces

In this section, we present a basic notion for our approach, i.e., information
granule system. Any information granule system is any tuple

S = (G, R, Sem) (1.1)
where

(1) G is a finite set of parameterized constructs (e.g., formulas) called
information granules;
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(2) R is a finite (parameterized) relational structure;
(3) Sem is a semantics of G in R.

For any information granule system two more components are given:

(1) A finite set H of granule inclusion degrees with a partial order
relation < which defines on H a structure used to compare the
inclusion degrees; we assume that H consists of the lowest degree 0
and the largest degree 1;

(2) A binary relation v, C G x G to be a part to a degree at least
p € H between information granules from G, called rough inclusion.
(Instead of v,(g, g') we also write v(g,g") > p.)

Components of an information granules system are parameterized. This
means that we deal with parameterized formulas and a parameterized rela-
tional system. The parameters are tuned to make it possible to construct
finally relevant information granules, i.e., granules satisfying a given speci-
fication or/ and some optimization criteria.

There are two kinds of computations on information granules. These
are computations on information granule systems and computations on in-
formation granules in such systems, respectively. The purpose of the first
type of computation is the relevant information granule systems defining
parameterized approximation spaces for concept approximations used on
different levels of target information granule constructions and the purpose
of the second types of computation is to construct information granules
over such information granule systems to obtain target information gran-
ules, e.g., satisfying a given specification (at least to a satisfactory degree).

Examples of complex granules are tolerance granules created by means
of similarity (tolerance) relation between elementary granules, decision rules,
sets of decision rules, sets of decision rules with guards, information sys-
tems or decision tables (see, e.g., Polkowski and Skowron, 1999a; Skowron
and Stepaniuk, 2001a; Skowron, 2001). The most interesting class of infor-
mation granules are information granules approximating concepts specified
in natural language by means of experimental data tables and background
knowledge.

One can consider as an example of the set H of granule inclusion degrees
the set of binary sequences of a fixed length with the relation v to be a part
defined by the lexicographical order. This degree structure can be used
to measure the inclusion degree between granule sequences or to measure
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the matching degree between granules representing classified objects and
granules describing the left hand sides of decision rules in simple classifiers
(see, e.g., Polkowski and Skowron, 2001a). However, one can consider more
complex degree granules by taking as degree of inclusion of granule g; in
granule g5 the granule being a collection of common parts of these two
granules g; and go.

New information granules can be defined by means of operations per-
formed on already constructed information granules. Examples of such
operations are set theoretical operations (defined by propositional connec-
tives). However, there are other operations widely used in machine learn-
ing or pattern recognition for construction of classifiers (Mitchell, 1997).
These are the Match and Con flict_res operations (Polkowski and Skowron,
2001a). We will discuss such operations in one of the following sections. It
is worthwhile mentioning yet another important class of operations, namely,
operations defined by data tables called decision tables (skowron and Stepa-
niuk, 2001a). From these decision tables, decision rules specifying opera-
tions can be induced. More complex operations on information granules
are so called transducers (Doherty et al, 2002). They have been introduced
to use background knowledge (not necessarily in the form of data tables)
in construction of new granules. One can consider theories or their clus-
ters as information granules. Reasoning schemes in natural language define
the most important class of operations on information granules to be in-
vestigated. One of the basic problems for such operations and schemes of
reasoning is how to approximate them by available information granules,
e.g., constructed from sensor measurements.

In an information granule system, the relation v, to be a part to a
degree at least p has a special role. It satisfies some additional natural ax-
ioms and additionally some axioms of mereology (Polkowski and Skowron,
1996a). It can be shown that the rough mereological approach built on the
basis of the relation to be a part to a degree generalizes the rough set and
fuzzy set approaches. Moreover, such relations can be used to define other
basic concepts like closeness of information granules, their semantics, indis-
cernibility and discernibility of objects, information granule approximation
and approximation spaces, perception structure of information granules as
well as the notion of ontology approximation. One can observe that the
relation to be a part to a degree can be used to define operations on infor-
mation granules corresponding to generalization of already defined infor-
mation granules. For details the reader is referred to the book (Pal et al,
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2002).

Let us finally note that new information granule systems can be defined
using already constructed information granule systems. This leads to a
hierarchy of information granule systems.

1.3 Granular Multi-Agent System

In this section, we outline how our approach can be used in approximate
reasoning by agents (Huhns and Singh, 1998) in a distributed environment.

We assume each agent ag € Ag is equipped with a system of information
granules S(ag). Using such a system, the agent ag creates a representation
for all its components. The reader can find some details of such a represen-
tation (see, e.g., Polkowski and Skowron, 1998a, 1999a). Agents are able
to extract local approximate reasoning schemes called productions from
such representations. Algorithmic methods for extracting such productions
from data are discussed in (Polkowski and Skowron, 1996b; Skowron, 2001;
Skowron and Stepaniuk, 2001a). The left hand side of each production (in
the simplest case) is of the form

(st1 (ag), (551), ey sgl))) Yo e (stk (ag), (sgk), ... ,sgk))) (1.2)

and the right hand side is of the form

(St ((lg),({;‘l,...,z’;‘,.)) (]-3)

for some positive integers k, r.

Such a production represents information about an operation o that
can be performed by an agent ag. In the production, k£ denotes the arity of
operation. The operation o represented by the production is transforming
standard (prototype) input information granules sti(ag),...,stx(ag) into
the standard (prototype) information granule st(ag). Moreover, if input in-
formation granules gy, ..., gy are included (close) to sti(ag), ..., stx(ag) to
degrees 55-1), e ,sg-k) at least, then the result of the operation o on informa-
tion granules g1, . .., g is included (close) to the standard st(ag) to a degree
at least e; where 1 < j <r (see Figure 1.1). Standard (prototype) granules
can be interpreted in different ways. In particular, they can correspond to
concept names in natural language.

The sample productions in Figure 1.1 are basic components of a rea-
soning system related to the agent set Ag. An important property of such



July 14, 2002 9:23 WorldScientific/ws-b8-5x6-0 ws-b8-5x6-

Granular Multi-Agent System 7

productions
obtained
by local

decomposition

Fig. 1.1 Productions and AR-schemes

productions is that they are expected to be discovered from available ex-
perimental data and background knowledge. Let us observe also that the
degree structure is not necessarily restricted to positive reals from the inter-
val [0, 1]. The inclusion degrees can be complex information granules used
to represent the degree of inclusion. It is worthwhile to mention that the
productions can be also interpreted as a constructive description of some
operations on fuzzy sets. The methods for such constructive description is
based on rough sets and Boolean reasoning (see, e.g., Komorowski et al,
1998; Pawlak, 1991).

Reasoning in multi-agent system can be represented as a construction
process of information granules. This process is not restricted to internal
operations performed by agents. The agents can communicate. In this
process they exchange some information granules. It is important to note
that any agent possesses her/his own information granule system. Hence,
a granule received by one agent from another agent can not be in general
understood precisely by the receiving agent. We assume that to j-th ar-
gument of any operation o performed by an agent ag there is associated
an approximation space AS(ag)’ (see, e.g., Skowron and Stepaniuk, 2001;
Polkowski and Skowron, 2000) making it possible to construct relevant ap-
proximations of the received information granules used next as operation
arguments. The result of approximation is an information granule in the
information granule system of the agent ag. In some cases, the approxima-
tion can be induced using rough set methods (see, e.g. Skowron and Stepa-
niuk, 2001a). In general, constructing information granule approximations
is a complex process because, for instance, a high quality approximation
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of concepts can be often obtained only through dialog (including negotia-
tions, conflict resolution, and cooperation) among agents. In this process,
the approximation can be constructed gradually when dialog is progressing.

The approximation spaces are usually parameterized. It means that it
is necessary to tune their parameters to find (sub-) optimal approxima-
tions of the information granules. This observation was a starting point
for Rough-Neuro Computing paradigm (see Skowron et al, 1999; Polkowski
and Skowron, 2001a, Pal et al, 2001, 2002; Skowron and Stepaniuk, 2001a,
Skowron, 2001).

In general, the inputs of rough neurons are derived from information
granules instead of real numbers and the parameterized approximation
spaces correspond to real weights in the classical neuron. The result of
an operation o depends on the chosen parameters of approximation spaces.
The process of tuning parameters of such approximation spaces corresponds
to the process of weight tuning of classical neurons.

Now, we are able to discuss one of the main concepts of our approach,
i.e., approximate reasoning schemes (AR-schemes). They can be treated
as some derivations obtained by using the productions of different agents.
Assume for simplicity of considerations that agents are working using the
same system of information granules, i.e., they do not use approximation
spaces to approximate granules received from other agents. The approach
can be extended to the more general case. The relevant derivations defin-
ing AR-schemes satisfy a so called robustness (or stability) condition (see
Figure 1.1). That is, at any node of derivation the inclusion (or closeness)
degree of a constructed granule (to a given standard) is higher than re-
quired by the production to which the result should be sent. This makes
it possible obtain a sufficient robustness condition for the whole derivation.
For details the reader is referred to papers (Polkowski and Skowron, 1998a,
1999a, 1999b, 2000, 2001b). In the general case, i.e., when it is necessary
to use approximation spaces, the AR-schemes can be interpreted as rough
neural networks. In the case where standards are interpreted as concept
names in natural language and there is given a reasoning scheme in natu-
ral language over such standards, the corresponding rough neural network
represents a cluster of reasoning constructions approximately following (in
other information granule systems) the reasoning given in natural language.

Let us observe that AR schemes are not classical proofs defined by
means of deductive systems. They are approximate reasoning schemes dis-
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covered from data and background knowledge. The notion of classical proof
is substituted by means of derivations defining A R-schemes, i.e., derivations
satisfying some constraints. The deductive systems are substituted by pro-
ductions systems of agents linked by approximation spaces, communication
strategies and mechanism of derivation of AR-schemes. This revision of
classical logical notions seems to be important for solving complex prob-
lems in multi-agent systems.

1.4 Classifiers as Information Granules

An important class of information granules create classifiers. One can
observe that sets of decision rules generated from a given decision ta-
ble DT = (U, A,d) can be interpreted as information granules (see, e.g.,
Skowron, 2001). The classifier construction from DT can be described as
follows:

(1) First, one can construct granules G; corresponding to each partic-
ular decision j = 1,...,r by taking a collection {g;; : i = 1,...,k;}
of left hand sides of decision rules for a given decision.

(2) Let E be a set of elementary granules (e.g., defined by conjunction
of descriptors) over IS = (U, A). We can now consider a granule
denoted by

Match(e,G1,...,G,)

for any e € E being a collection of coeflicients ¢;; where ¢;; = 1 if
the set of objects defined by e in IS is included in the meaning of
9;; in IS, i.e., Semrs(e) C Semis(gi;); and 0, otherwise. Hence,
the coefficient €;; is equal to 1 if and only if the granule e matches
in IS the granule g;;.

(3) Let us now denote by Con flict_res an operation (resolving conflict
between decision rules recognising elementary granules) defined on
granules of the form Match(e,G1,...,G,) with values in the set of
possible decisions 1,...,r. Hence,

Conflict_res(Match(e,Gq,...,G,))
is equal to the decision predicted by the classifier

Conflict res(Match(e,G1,...,G;))
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Fig. 1.2 Classifiers as Information Granules

on the input granule e.

Hence, classifiers are special cases of information granules. Parameters
to be tuned are voting strategies, matching strategies of objects against
rules as well as other parameters like closeness of granules in the target
granule.

The classifier construction is illustrated in Fig. 1.2 where three sets
of decision rules are presented for the decision values 1,2,3, respectively.
Hence, we have r = 3. In figure to omit too many indices we write «; instead
of g;1, B; instead of g;», and -; instead of g;3, respectively. Moreover,
€1,E2,E3, denote €1,1,€2,1,€3,1; €4,€5,E6,E7 denote €1,2,€2,2,€3,2,€4,2; and
€8,€9 denote €1 3,€2 3, respectively.

The reader can now easily describe more complex classifiers by means
of information granules. For example, one can consider soft instead of crisp
inclusion between elementary information granules representing classified
objects and the left hand sides of decision rules or soft matching between
recognized objects and left hand sides of decision rules.
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1.5 Approximation Spaces in Rough-Neuro Computing

In this section we would like to look more deeply on the structure of ap-
proximation spaces in the framework of information granule systems.

Such information granule systems are satisfying some conditions related
to their information granules, relational structure as well as semantics.
These conditions are the following ones:

(1) Semantics consists of two parts, namely relational structure R and
its extension R*.

(2) Different types of information granules can be identified: (i) object
granules (denoted by z), (ii) neighborhood granules (denoted by n
with subscripts), (iii) pattern granules (denoted by pat), and (iv)
decision class granules (denoted by c).

(3) There are decision class granules ci,...,c, with semantics in R*
defined by a partition of object granules into r decision classes.
However, only the restrictions of these collections to the object
granules from R are given.

(4) For any object granule z there is a uniquely defined neighborhood
granule n,.

(5) For any class granule ¢ there is constructed a collection granule
{(pat,p) : uff (pat,c)} of pattern granules labeled by maximal de-
grees to which pat is included in ¢ (in R).

(6) For any neighborhood granule n, there is distinguished a collec-
tion granule {(pat, p) : u{f(nz, pat)} of pattern granules labeled by
maximal degrees to which n, is at least included in pat (in R).

(7) There is a class of Classifier functions transforming collection
granules (corresponding to a given object z) described in two pre-
vious steps into the power set of {1,...,7}. One can assume object
granules to be the only arguments of Classi fier functions if other
arguments are fixed.

The classification problem is to find a Classifier function defining a
partition of object granules in R* as close as possible to the partition defined
by decision classes.

Any such Classifier defines the lower and the upper approximations
of union of decision classes ¢; over i € I where I is a nonempty subset of

{1,...,r} by
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Classifier({c;}ic1) = {z € U ¢i : 0 # Classifier(z) C I}

i€l

Classifier({ci}ic1) = {z € U* : Classifier(z) NI # 0}.

The positive region of Classifier is defined by

POS (Classifier) = Classifier({c1}) U ... U Classifier({c,}).

The closeness of the partition defined by the constructed Classifier
and the partition in R* defined by decision classes can be measured, e.g.,
using ratio of the positive region size of Classifier to the size of the object
universe. The quality of Classifier can be defined taking, as usual, only
into account objects from U* — U:

card(POS (Classifier) N (U* —U))
card((U* — U))

quality(Classifier) =

One can see that approximation spaces have many parameters to be
tuned in order to construct the approximation of high quality class granules.

One more interesting issue is the direct connection between descrip-
tions using classifier-based granules and the characterisation in terms of
the Dempster-Shafer theory of evidence. This inter-connection derives from
the relationships that exist between rough set theory and evidence theory
as described in e.g., (Skowron and Grzymala—Busse, 1994). We may intro-
duce belief and plausibility functions that characterise granules defined by
classifiers in the following way (with previous notation):

_ {z € U*: Classifier(z) C I}|

Bel assifier I =
elciassifier(I) T
_ {Classifier({ci}icr)
a U
x € U* : Classifier(z) NI #£ 0
PlClassifier(I) = |{ f ( ) ;é }|

U
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_ |{Classifier({ci}ic1)|
a L%

More detailed information about the classifier quality given by Belciassifier
and PLciassifier can be used to tune Classi fier.

1.6 Standards, Productions, and A R-schemes

AR-schemes have been proposed as schemes of approximate reasoning in
rough-neuro computing (see, e.g., Pal et al, 2002; Skowron, 2001). The main
idea is that the deviation of objects from some distinguished information
granules, called standards or prototypes, can be controlled in appropriately
tuned approximate reasoning. Several possible standard types can be cho-
sen. Some of them are discussed in the literature (see, e.g., Pal et al, 2002).
We propose to use standards defined by classifiers. Such standards corre-
spond to lower approximations of decision classes or (definable parts of)
boundary regions between them.

Rules for approximate reasoning, called productions, are extracted from
data (for details see Skowron, 2001a). Any production has some premises
and conclusion. In the considered case each premise and each conclusion
consists of a triple (classi fier, standard, deviation). This idea in hybridiza-
tion with rough-fuzzy information granules (see, e.g., Skowron, 2001a)
seems to be especially interesting. The main reasons are:

e standards are values of classifiers defining approximations of cut
differences and boundary regions between cuts (Skowron, 2001a),

e there is a natural linear order on such standards defined by classi-
fiers.

To explain the meaning of productions let us consider the following example
of a production with two premises:

if (Ci,standi,e1) and (Cs, stands,es) then (C, stand, €)

In the production classifiers C7, Cs, C are labeled by standards stand;,
stands, stand and deviations €1, €2, €. The deviation ¢ is showing the
range in which (in the considered linear order) can the deviation move the
standard stand. The intended meaning of such production is that if the

ws-b8-5x6-
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deviation of input from standards stand;, stand, are respectively at most
€1, €2 then the conclusion deviates from stand to degree at most ¢.

From production extracted from data AR-schemes can be derived (see,
e.g., Skowron, 2001a).

One more important step that can be performed in order to bring this
framework closer to the idea of pure computing with words is by substitut-
ing the degrees of closeness ( deviations €,&1,€2 in our case) by linguistic
variables. What we want to make possible is the formulation of granule
production in a purely linguistic way, for example:

if similarity between C; and standard stand; is high
and similarity between Cs and standard stands is low
then similarity between C' and standard stand is medium

To achieve this task we have to define partitions for the ranges of devi-
ation as the deviation is used to measure similarity between classifier and
corresponding standards. Let us consider the deviation € for the classifier
C and standard stand. It is quite natural to assume that the subsets of
range are ordered linearly. Also, their layout should be fuzzy-like. We may
e.g. take three such sets stating represented as {low, medium, high}. As
these sets may (and in fact should) overlap, in turn we get more possible
linguistic values e.g. {low, low or medium, medium, mediumor high, high}.

The retrieval of proper sets for deviation ranges should be devised as
an interactive data-driven process. By analysis of standards and classifiers
and matching them against the training data we attempt to establish an
initial layout for deviations. This layout (the choice and setting of subsets)
is then verified and possibly modified in order to achieve high compliance
with the underlying data sets. The choice of proper parameters for the
sets of deviation ranges may be based on various known techniques in data
analysis such as clustering, statistical analysis, density analysis etc.

1.7 Conclusions and Some Directions for Further Research

‘We have outlined a methodology for approximate reasoning in distributed
multi-agent systems. Developing such methodology is very important for
making progress in complex, real-life projects, like control of autonomous
vehicles. Among research directions related to the discussed AR-schemes
and rough neural networks are: (i) developing foundations for information
granule systems, (ii) algorithmic methods for inducing parameterized pro-
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ductions and AR-schemes, (iii) algorithmic (adaptive) methods for learning
in rough neural networks, in particular, fusion methods in rough neural
neurons, (v) developing of multi-agent systems based on approximate rea-
soning for complex real-life problems, (vi) parallel algorithms searching for
AR-schemes and methods for their hardware implementation.
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