Rough Sets and Boolean Reasoning

Andrzej Skowron

Institute of Mathematics
Warsaw University

Banacha 2, 02-095, Warsaw,
POLAND

email: skowron@mimuw.edu.pl

Abstract. In recent years we witness a rapid growth of interest in rough set theory
and its applications, worldwide. The theory has been followed by the development
of several software systems that implement rough set operations, in particular for
solving knowledge discovery and data mining tasks. Rough sets are applied in do-
mains, such as, for instance, medicine, finance, telecommunication, vibration analy-
sis, conflict resolution, intelligent agents, pattern recognition, control theory, signal
analysis, process industry, marketing, etc.

We introduce basic notions and discuss methodologies for analyzing data and
surveys some applications. In particular we present applications of rough set meth-
ods for feature selection, feature extraction, discovery of patterns and their applica-
tions for decomposition of large data tables as well as the relationship of rough sets
with association rules. Boolean reasoning is crucial for all the discussed methods.

We also present an overview of some extensions of the classical rough set ap-
proach. Among them is rough mereology developed as a tool for synthesis of objects
satisfying a given specification in a satisfactory degree. Applications of rough mere-
ology in such areas like granular computing, spatial reasoning and data mining in
distributed environment are outlined.

1 Basic rough set approach

We start by presenting the basic notions of classical rough set approach [41]
introduced to deal with imprecise or vague concepts.

Information systems

A data set can be represented by a table where each row represents, for
instance, an object, a case, or an event. Every column represents an attribute,
or an observation, or a property that can be measured for each object; it can
also be supplied by a human expert or user. This table is called an information
system. More formally, it is a pair A = (U, A) where U is a non-empty finite
set of objects called the universe and A is a non-empty finite set of attributes
such that a : U — V, for every a € A. The set V, is called the value set of a.
By Infp(z) = {(a,a(z)) : a € B} we denote the information signature of ©
with respect to B, where B C A and z € U.
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Decision systems

In many cases the target of the classification, that is, the family of concepts
to be approximated is represented by an additional attribute called decision.
Information systems of this kind are called decision systems. A decision sys-
tem is any system of the form A = (U, A,d), where d ¢ A is the decision
attribute and A is a set of conditional attributes or simply conditions.

Let A= (U, A,d) be given and let V4 = {v1,...,v.(g)}. Decision d deter-
mines a partition {Xi,..., X, ()} of the universe U, where X = {z € U :
d(z) = vp} for 1 < k < r(d). The set X; is called the i-th decision class of
A. By X4(u) we denote the decision class {z € U : d(z) = d(u)}, for any
uel.

One can generalize the above definition to a case of decision systems of
the form A = (U, A, D) where the sets D = {d;, ...di } of decision attributes
and A are assumed to be disjoint. Formally this system can be treated as the
decision system A = (U, A,dp) where dp(z) = (d1 (), ..., di(z)) for z € U.

The decision tables can be identified with training samples known in Ma-
chine Learning and used to induce concept approximations in the process
known as supervised learning [28].

Rough set approach allows to precisely define the notion of concept ap-
proximation. It is based [41] on the indiscernibility relation between objects
defining a partition (or covering) of the universe U of objects. The indis-
cernibility of objects follows from the fact that they are perceived by means
of values of available attributes. Hence some objects having the same (or
similar) values of attributes are indiscernible.

Indiscernibility relation

Let A = (U, A) be an information system, then with any B C A there is
associated an equivalence relation IND 4(B):

IND4(B) = {(z,2') € U? : Va € B a(z) = a(z')}

IND4(B) (or, IND(B), for short) is called the B-indiscernibility relation,
its classes are denoted by [z]p. By X/B we denote the partition of U defined
by the indiscernibility relation IND(B).

Now we will discuss what sets of objects can be expressed (defined) by
formulas constructed by means of attributes and their values. The simplest
formulas, called descriptors, are of the form a = v where a € A and v € V.
One can consider generalized descriptors of the form a € S where § C V,. The
descriptors can be combined into more complex formulas using propositional
connectives. The meaning ||¢||4 in A of formula ¢ is defined inductively by

1. if ¢ is of the form a = v then ||p||la ={z € U : a(z) =v};
2. lleng'lla = llellanlle'llas leve'lla = llellaulle’lla; lI-ella = U—ll¢lla-
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The above definition can be easily extended to generalized descriptors.

Any set of objects X C U definable in A by some formula ¢ (i.e.,
X=[|¢|la) is referred to as a crisp (exact) set — otherwise the set is rough
(inexact, vague). Vague concepts may be only approximated by crisp con-
cepts; these approximations are defined now [41].

Lower and upper approximation of sets, boundary regions

Let A = (U, A) be an information system and let B C A and X C U. We
can approximate X using only the information contained in B by construct-
ing the B-lower and B-upper approzimations of X, denoted BX and BX
respectively, where BX = {z : [z]p C X} and BX = {z: [z]p N X # 0}.

The lower approximation corresponds to certain rules while the upper
approximation to possible rules (rules with confidence greater than 0) for
X. The B-lower approximation of X is the set of all objects which can be
with certainty classified to X using attributes from B. The set U — BX is
called the B-outside region of X and consists of those objects which can
be with certainty classified as not belonging to X using attributes from B.
The set BNg(X) = BX — BX is called the B-boundary region of X thus
consisting of those objects that on the basis of the attributes from B cannot be
unambiguously classified into X. A set is said to be rough (respectively crisp)
if the boundary region is non-empty (respectively empty). Consequently each
rough set has boundary-line cases, i.e., objects which cannot be with certainty
classified neither as members of the set nor of its complement. Obviously crisp
sets have no boundary-line elements at all. That means that boundary-line
cases cannot be properly classified by employing the available knowledge.
The size of the boundary region can be used as a measure of the quality of
set approximation (in U).

It can be easily seen that the lower and upper approximations of a set are,
respectively, the interior and the closure of this set in the topology generated
by the indiscernibility relation.

One can consider weaker indiscernibility relations defined by tolerance
relations defining coverings of the universe of objects by tolerance (similarity)
classes. An extension of rough set approach based on tolerance relations has
been used for pattern extraction and concept approximation (see, e.g., [64],
[69], (351, [32))-

Quality measures of concept approximation and measures of
inclusion and closeness of concepts

We now present some examples of measures of quality approximation as well
as of inclusion and closeness (approximate equivalence). These notions are
instrumental in evaluating the strength of rules and closeness of concepts as
well as being applicable in determining plausible reasoning schemes [45], [563].
Important role is also played by entropy measures (see e.g., [11]).
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Let us consider first an example of a quality measure of approximations.

Accuracy of approximation. A rough set X can be characterized numer-
ically by the following coefficient

|B(X)|

0= )

called the accuracy of approzimation, where | X| denotes the cardinality of
X # 0 and B is a set of attributes. Obviously 0 < ap(X) < 1. If ap(X) =1,
X is crisp with respect to B (X is ezact with respect to B), and otherwise,
if ag(X) < 1, X is rough with respect to B (X is vague with respect to B).

Rough membership function. In classical set theory either an element
belongs to a set or it does not. The corresponding membership function is
the characteristic function of the set, i.e., the function takes values 1 and 0,
respectively. In the case of rough sets the notion of membership is different.
The rough membership function quantifies the degree of relative overlap be-
tween the set X and the equivalence class to which z belongs. It is defined
as follows:

|[z]s N X|

uh@) U = [0,1] and @) = o

The rough membership function can be interpreted as a frequency—based es-
timate of Pr(y € X | u), the conditional probability that object y belongs
to set X, given the information signature u = Infp(z) of object x with
respect to attributes B. The value u% (z) measures degree of inclusion of
{yeU:Infp(z)=Infp(y)} in X.

Positive region and its measure. If X;,..., X, (4) are decision classes of
A, then the set BX; U...U BX,q) is called the B-positive region of A and
is denoted by POSp(d). The number |POSgp(d)|/|U| measures a degree of
inclusion of the partition defined by attributes from B into the partition de-
fined by the decision.

Dependencies in a degree. Another important issue in data analysis is
discovering dependencies among attributes. Intuitively, a set of attributes D
depends totally on a set of attributes C, denoted C = D, if all values of
attributes from D are uniquely determined by values of attributes from C. In
other words, D depends totally on C, if there exists a functional dependency
between values of D and C. Dependency can be formally defined as follows.

Let D and C be subsets of A. We will say that D depends on C'in a degree
k (0<k <1),denoted C =, D, if

POSc(D
b= +(0,0) - IPOSED),
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where POS¢(D) = POS¢(dp).

Obviously
IC(X)I
ol

vC, D)=
XeU/D
If £ = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (to a degree k) on C. v(C, D) describes the closeness of the
partition U/D and its approximation with respect to conditions from C.
The coefficient k& expresses the ratio of all elements of the universe which
can be properly classified to blocks of the partition U/D by employing at-
tributes C. It will be called the degree of the dependency.

Inclusion and closeness in a degree. Instead of classical exact set inclu-
sion inclusion in a degree is often used in the process of deriving knowledge
from data. Well known measure of inclusion of two non-empty sets X, Y C U
is described by | X NY|/|X]| [2], [45]; their closeness can be defined by

min (|X NY|/|X],|X N Y|/[Y]).

2 Searching for knowledge

In this section we discuss problem of concept approximations. We point out
that it is also the main goal of strategies searching for knowledge. Next we
present selected methods based on rough sets and Boolean reasoning for
concept approximation.

2.1 Concept approximation

Searching for concept approximations is a basic task in pattern recognition or
machine learning. It is also crucial to knowledge discovery [13], in particular
to scientific discovery [73], [23]. For example, scientific discovery [73] is using,
as a main source of power, relatively general knowledge, including knowledge
to search combinatorial spaces. Hence, it is important to discover efficient
searching strategies. This includes the processes of inducing the relevant fea-
tures and functions over which these strategies are constructed as well as
the structure of searching strategy induced from such constructs. The goal
of knowledge discovery [60], [23] is to find knowledge that is novel, plausible
and understandable. Certainly, these soft concepts should be induced up to
a sufficient degree, i.e., their approximations should be induced to specify
the main constraints in searching for knowledge. In this sense the concept
approximation is the basic step not only for machine learning or for pattern
extraction but also for knowledge discovery and scientific discovery. Certainly,
in the latter cases the inducing processes of concept approximations are much
more complex and searching for such approximations creates a challenge for
researchers.
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Qualitative process representation, qualitative reasoning, spatial reason-
ing, perception and measurement ingtruments, collaboration and communica-
tion, embodied agents are only some topics of research directions mentioned
in [60] as important for scientific reasoning and discovery. The mentioned
above topics are very much in the scope of computing with words [74], [75]
and granular computing (see e.g. [53], [65]). Rough set extension called rough
mereology (see e.g. [45], [51], [48]) has been proposed as a tool for approxi-
mate reasoning to deal with such problems [65], [54]. Schemes of reasoning in
rough mereology approximating soft patterns seem to be crucial for making
progress in knowledge discovery. In particular this approach has been used to
build a calculus on information granules [53], [65] as a foundation for comput-
ing with words. Among the discussed issues related to knowledge discovery
using this approach there are generalized soft association rules, synthesis of
interfaces between sources exchanging concepts and using different languages,
problems in spatial reasoning.

Let us now turn back to discussion on inducing concept approximation
by using rough set approach. First we recall a generalized approximation
space definition introduced in [64]. This definition helps to explain a general
approach offered by rough sets for concept approximations.

A parameterized approximation space is a system

ASy s = (U, Iy, vg)
where

e U is a non-empty set of objects,

o I, : U — P (U) is an uncertainty function and P (U) denotes the power-
set of U,

e vy : P(U)x P(U)— [0,1] is a rough inclusion function,

e # and $ are sets of parameters.

The uncertainty function defines for every object x a set of objects, called
neighborhood of z, consisting of objects indistinguishable with z or similar
to z. The parameters (from #) of the uncertainty function are used to search
for relevant neighborhoods with respect to the task to be solved, e.g. concept
description.

A constructive definition of uncertainty function can be based on the
assumption that some metrics (distances) are given on attribute values. For
example, if for some attribute a € A a metric 6, : V, x V, — [0,00) is
given, where V, is the set of all values of attribute a then one can define the
following uncertainty function:

y € I]* (z) if and only if &, (a (z),a () < fu(a(2),a(y)),

where f, : V, x V, = [0,00) is a given threshold function.
A set X C U is definable in ASy ¢ if it is a union of some values of the
uncertainty function.
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The rough inclusion function defines a degree of inclusion between two
subsets of U [64], [48]. The parameters (from $ ) of the rough inclusion
function are used to search for relevant inclusion degrees with respect to the
task to be solved, e.g. concept description.

For a parameterized approximation space ASyg¢ = (U, Ix,vg) and any
subset X C U the lower and the upper approximations are defined by

LOW (AS#,$,X) ={zelU:vg(Uy(z),X)=1},

UPP (ASy4,X) ={z € U :vg(Iy (z),X) > 0}, respectively.

Any generalized approximation space consists of a family of approxima-
tion spaces creating the search space for data models. Any approximation
space in this family is distinguished by some parameters. Searching strategies
for optimal (sub-optimal) parameters are basic rough set tools in searching
for data models and knowledge.

There are two main types of parameters. The first ones are used to define
object sets, called neighborhoods, the second are measuring the inclusion or
closeness of neighborhoods.

The basic assumption of the classical rough set approach, shared with
other approaches like machine learning, pattern recognition or statistics, is
that objects are perceived by means of some features (e.g. formulas being the
results of measurement of the form attribute=value called descriptors). Hence,
some objects can be indiscernible (indistinguishable) or similar to each other.
The sets of indiscernible or similar objects expressible by some formulas are
called neighborhoods. In the simplest case the family of all neighborhoods
create a partition of the universe. In more general case it defines a covering.
Formulas defining the neighborhoods are basic building blocks from which
the approximate descriptions of other sets (decision classes or concepts) are
induced. Usually, like in machine learning, the specification of concepts is
incomplete, e.g., given by examples and counterexamples. Having incomplete
specification of concepts, one can induce only approximate description of con-
cepts by means of formulas defining the neighborhoods. Hence it follows that
it will be useful to have parameterized formulas (e.g. in the simplest case
a > pAb < q where a,b are attributes and p,q are parameters) so that by
tuning their parameters one can select formulas being relevant for inducing
concept approximation. A formula is relevant for concept description if it
defines a large neighborhood still included to a sufficient degree in approx-
imated concept. In the simplest case the formulas defining neighborhoods
are conjunctions of descriptors. Parameters to be tuned can be of different
sort like the number of conjunction connectives in the formula or the interval
boundaries in case of discretization of real value attributes. In more general
case, these formulas can express the results of measurement or perception of
observed objects and represent complex information granules. Among such
granules can be decision algorithms labeled by feature value vectors (describ-
ing an actual situation in which algorithm should be performed), clusters of
such granules defined by their similarity or hierarchical structures of such
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granules (see e.g. [65]). These complex granules become more and more im-
portant for qualitative reasoning, in particular for spatial reasoning [54].
Assuming that a partition (covering) of objects has been fixed, the set
approximations are induced by tuning of parameters specifying the degree of
set inclusion.
In this way concept approximations are induced from data using rough
set approach.

2.2 Discernibility and Boolean reasoning

We have pointed out that rough set approach has been introduced by Z.
Pawlak [41] to deal with vague or imprecise concepts. More generally it is an
approach for deriving knowledge from data and for reasoning about know-
ledge derived from data. Searching for knowledge is usually guided by some
constraints [23]. A wide class of such constraints can be expressed using rough
set setting or its generalizations (like rough mereology [45], or granular com-
puting [53]). Knowledge derived from data by rough set approach consists
of different constructs. Among them are basic for rough set approach con-
structs, called reducts, different kinds of rules (like decision rules or associa-
tion rules) dependencies, patterns (templates) or classifiers. The reducts are
of special importance because all other constructs can be derived from differ-
ent kinds of reducts using rough set approach. Searching strategies for reducts
are based on Boolean (propositional) reasoning [4] because constraints (e.g.
related to discernibility of objects) are expressible by propositional formu-
las. Moreover, using Boolean reasoning data models with the minimum de-
scription length [56], [28] can be induced because they correspond to some
constructs of Boolean functions called prime implicants (or their approxima-
tions). Searching for knowledge can be performed in the language close to
data or in a language with more abstract concepts what is closely related
to problems of feature selection and feature extraction in Machine Learning
or Pattern Recognition [28]. Let us also mention that data models derived
from data by using rough set approach are controlled using statistical test
procedures (for more details see, e.g., [11], [10]).

In the paper we present illustrative examples showing how the above
outlined general scheme is used for deriving knowledge.

Now, it will be important to make some remarks on Boolean reasoning
because the most methods discussed later are based on generation of reducts
using Boolean reasoning.

Boolean reasoning

The combination of rough set approach with Boolean Reasoning [4] has
created a powerful methodology allowing to formulate and efficiently solve
searching problems for different kinds of reducts and their approximations.
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The idea of Boolean reasoning is based on the construction for a given
problem P of a corresponding Boolean function fp with the following prop-
erty: the solutions for the problem P can be recovered from prime implicants
of fp. An implicant of a Boolean function f is any conjunction of literals
(variables or their negations) such that if the values of these literals are true
under an arbitrary valuation v of variables then the value of the function f
under v is also true. A prime implicant is a minimal implicant.

Searching strategies for data models under a given partition of objects
are based, using rough set approach, on discernibility and Boolean reasoning
(see e.g., [35], [32],[62], [69], [70], [49], [50]). This process covers also tuning
of parameters like thresholds used to extract relevant partition (or covering),
to measure the degree of inclusion (or closeness) of sets, or the parameters
measuring the quality of approximation.

It is necessary to deal with Boolean functions of large size to solve real-life
problems. However, a successful methodology based on the discernibility of
objects and Boolean reasoning has been developed for computing of many im-
portant for applications constructs like reducts and their approximations, de-
cision rules, association rules, discretization of real value attributes, symbolic
value grouping, searching for new features defined by oblique hyperplanes or
higher order surfaces, pattern extraction from data as well as conflict reso-
lution or negotiation. Reducts are also basic tools for extracting from data
functional dependencies or functional dependencies in a degree (for references
see the papers and bibliography in [62], [37], [49], [50]).

Most of the problems related to generation of the above mentioned con-
structs are of high computational complexity (i.e., they are NP-complete or
NP-hard). This is also showing that most of the problems related to, e.g.,
feature selection, pattern extraction from data have intrinsic high computa-
tional complexity. However, using developed methodology based on discerni-
bility and Boolean reasoning it was possible to discover efficient heuristics
returning suboptimal solutions of the problems.

The reported results of experiments on many data sets are very promis-
ing. They show very good quality of solutions (expressed by the classifica-
tion quality of unseen objects and time necessary for solution construction)
generated by the heuristics in comparison with other methods reported in
literature. Moreover, for large data sets the decomposition methods based on
patterns called templates have been developed (see e.g., [35], [32]) as well as
a method to deal with large relational databases (see e.g., [31]). The first one
is based on decomposition of large data into regular sub-domains which are
of size feasible for developed methods. We will discuss this method later. The
second, (see e.g., [31]) has shown that Boolean reasoning methodology can
be extended to large relational data bases. The main idea is based on obser-
vation that relevant Boolean variables for very large formula (corresponding
to analyzed relational data base) can be discovered by analyzing some sta-
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tistical information. This statistical information can be efficiently extracted
from large data bases.

Another interesting statistical approach is based on different sampling
strategies. Samples are analyzed using the developed strategies and stable
constructs for sufficiently large number of samples are considered as relevant
for the whole table. This approach has been successfully used for generating
different kinds of so called dynamic reducts (see e.g., [3]). It has been used
for example for generation of so called dynamic decision rules. Experiments
on different data sets have proved that these methods are promising for large
data sets.

Our approach is strongly related to propositional reasoning [58] and fur-
ther progress in propositional reasoning will bring further progress in devel-
oping of the discussed methods. It is important to note that the methodology
allows to construct heuristics having a very important approzimation property
which can be formulated as follows: expressions (i.e., implicants) generated
by heuristics close to prime implicants define approximate solutions for the
problem [58].

In the sequel we will discuss in more details different kinds of reducts and
their applications for deriving different forms of knowledge from data.

2.3 Reducts in information systems and decision systems

We start from reducts of information systems. Given an A = (U, A), a reduct
is a minimal set of attributes B C A such that IND 4(B) = IND 4(A). In
other words, a reduct is a minimal set of attributes from A that preserves
the original classification defined by the set A of attributes. Finding a min-
imal reduct is NP-hard [63]; one can also show that for any m there exists
an information system with m attributes having an exponential number of
reducts. There exist fortunately good heuristics that compute sufficiently
many reducts in an acceptable time.

Let A be an information system with n objects. The discernibility matriz
of A is a symmetric n X n matrix with entries ¢;; as given below. Each entry
consists of the set of attributes upon which objects z; and z; differ.

cij ={a€ Ala(z;) #alz;)} for i,5=1,..,n.

A discernibility function f4 for an information system A4 is a Boolean
function of m Boolean variables af,...,a}, (corresponding to the attributes
G1, ..y Q) defined by

Falat, naz) = NV & 11<i<i<n, e %0}

where cj; = {a* | a € ¢;;}. In the sequel we will write a; instead of a;.

The discernibility function f4 describes constraints which should be pre-
served if one would like to preserve discernibility between all pairs of dis-
cernible objects from 4. It requires to keep at least one attribute from each
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non-empty entry of the discernibility matrix, i.e., corresponding to any pair
of discernible objects. One can show [63] that the sets of all minimal sets of
attributes preserving discernibility between objects, i.e., reducts correspond
to prime implicants of the discernibility function f4.

The intersection of all reducts is the so-called core.

In general, the decision is not constant on the indiscernibility classes. Let
A = (U, A,d) be a decision system. The generalized decision in A is the
function 84 : U — P(Vy) defined by

Oa(z) ={i| 3z’ € U 2' IND(A) z and d(z’) = i}.

A decision system A is called consistent (deterministic), if |04 (z)| = 1 for any
z € U, otherwise A is inconsistent (non-deterministic). Any set consisting of
all objects with the same generalized decision value is called the generalized
decision class.

It is easy to see that a decision system A is consistent if, and only if,
POS 4(d) = U. Moreover, if dg = 9p:, then POSg(d) = POSp:(d) for
any pair of non-empty sets B, B’ C A. Hence the definition of a decision-
relative reduct: a subset B C A is a relative reduct if it is a minimal set
such that POS4(d) = POSg(d). Decision-relative reducts may be found
from a discernibility matrix: M%(A) = (cf;) assuming c¢f; = ¢;; — {d} if
(|0a(zs)] = Lor |Oa(z;)| = 1) and Oa(z;) # Jalz;) , cfj = 0, otherwise.
Matrix M9(A) is called the decision-relative discernibility matriz of A. Con-
struction of the decision-relative discernibility function from this matrix fol-
lows the construction of the discernibility function from the discernibility
matrix. one can show [63] that the set of prime implicants of f&,(A) defines
the set of all decision-relative reducts of A.

In some applications, instead of reducts we prefer to use their approxi-
mations called a-reducts, where a € [0,1] is a real parameter. For a given
information system A = (U, A) the set of attributes B C A is called a-reduct
if B has nonempty intersection with at least o - 100% of nonempty sets ¢;,;
of the discernibility matrix of A.

2.4 Reducts and Boolean reasoning: Examples of applications

We will present examples showing how the rough set methods in combina-
tion with Boolean reasoning can be used for solving several KDD problems.
A crucial for our approach are rough set constructs called reducts. They are
(prime) implicants of suitably chosen Boolean functions expressing discerni-
bility conditions which should be preserved during reduction.

Feature selection

Selection of relevant features is an important problem and has been exten-
sively studied in Machine Learning and Pattern Recognition (see e.g., [28]).
It is also a very active research area in the rough set community.
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One of the first ideas [41] was to consider the core of the reduct set of the
information system .4 as the source of relevant features. One can observe that
relevant feature sets (in a sense used by the machine learning community)
can be interpreted in most cases as the decision-relative reducts of decision
systems obtained by adding appropriately constructed decisions to a given
information system.

Another approach is related to dynamic reducts (for references see e.g.,
[49]). The attributes are considered relevant if they belong to dynamic reducts
with a sufficiently high stability coefficient, i.e., they appear with sufficiently
high frequency in random samples of a given information system. Several
experiments (see [49]) show that the set of decision rules based on such at-
tributes is much smaller than the set of all decision rules. At the same time
the quality of classification of new objects increases or does not change if one
only considers rules constructed over such relevant features.

The idea of attribute reduction can be generalized by introducing a con-
cept of significance of attributes which enables to evaluate attributes not only
in the two-valued scale dispensable — indispensable but also in the multi-value
case by assigning to an attribute a real number from the interval [0,1] that
expresses the importance of an attribute in the information table.

Significance of an attribute can be evaluated by measuring the effect of
removing the attribute from an information table.

Let C and D be sets of condition and decision attributes, respectively, and
let a € C be a condition attribute. It was shown previously that the number
~(C, D) expresses the degree of dependency between attributes C' and D, or
the accuracy of the approximation of U/D by C. It may be now checked how
the coefficient y(C, D) changes when attribute a is removed. In other words,
what is the difference between v(C, D) and y((C — {a}, D). The difference is
normalized and the significance of attribute a is defined by

@ v(C, D)

Y(C - {a}, D)
v(C, D)
Coefficient o¢,p(a) can be understood as a classification error which oc-

curs when attribute a is dropped. The significance coefficient can be extended
to sets of attributes as follows:

=1-

_ (7(07D) _7(0 — BaD)) _
7o (B) = ~(C, D) a

~(C — B, D)
v(C, D)
Another possibility is to consider as relevant the features that come from
approximate reducts of sufficiently high quality.

=1-
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Any subset B of C can be treated as an approzimate reduct of C and the
number

+(C.D) '@ Dy

is called an error of reduct approzimation. It expresses how exactly the set
of attributes B approximates the set of condition attributes C with respect
to determining D.

Several other methods of reduct approximation based on measures differ-
ent from positive region have been developed. All experiments confirm the
hypothesis that by tuning the level of approximation the classification quality
of new objects may be increased in most cases. It is important to note that
it is once again possible to use Boolean reasoning to compute the different
types of reducts and to extract from them relevant approximations.

gc,p)(B) =

Feature extraction

Non-categorical attributes must be discretized in a pre-processing step. The
discretization step determines how coarsely we want to view the world. Dis-
cretization is a step that is not specific to the rough set approach. A majority
of rule or tree induction algorithms require it in order to perform well. The
search for appropriate cut-off points can be reduced to finding some minimal
Boolean expressions called prime implicants.

Discretization can be treated as a searching for more coarser partitions
of the universe still relevant for inducing concept description of high quality.
We will also show that this basic problem can be reduced to computing of
basic constructs of rough sets, namely reducts of some systems. Hence it fol-
lows that we can estimate the computational complexity of the discretization
problems. Moreover, heuristics for computing reducts and prime implicants
can be used here. The general heuristics can be modified to more optimal
ones using konwledge about the problem e.g. natural order of the set of reals,
etc. The discretization is only an illustrative example of many other problems
with the same property.

The rough set community have been committed to constructing efficient
algorithms for (new) feature extraction. Rough set methods combined with
Boolean reasoning [4] lead to several successful approaches to feature extrac-
tion. The most successful methods are:

e discretization techniques,
e methods of partitioning of nominal attribute value sets and
e combinations of the above methods.

Searching for new features expressed by multi-modal formulae can be men-
tioned here. Structural objects can be interpreted as models (so called Kripke
models) of such formulas and the problem of searching for relevant features
reduces to construction of multi-modal formulas expressing properties of the
structural objects discerning objects or sets of objects [36].
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For more details the reader is referred to the bibliography in [50].

The reported results show that discretization problems and symbolic value
partition problems are of high computational complexity (i.e. NP-complete or
NP-hard) which clearly justifies the importance of designing efficient heuris-
tics. The idea of discretization is illustrated with a simple example.

Example 21 Let us consider a (consistent) decision system (see Tab. 1(a))
with two conditional attributes ¢ and b and seven objects uq,...,u7. The
values of the attributes of these objects and the values of the decision d are
presented in Tab. 1.

hv

Ala [b [d AP P67 ]d
u1]0.8|12 |1 u 0 |2 |1
uz|1 (0.5]0 uz |1 |0 ||0
usz|1.3|13 |0 - us |1 |2 ||0
us|1.4|1 |1 wg |1 |1 (|1
Uus 1.4|2 0 Uus 1 12 (|0
us|1.6|3 ||1 us (2 (2 |1
u7|1.3|1 |1 o) ur |1 |1 (|1 )

Table 1. The discretization process: (a) The original decision system A. (b) The
P-discretization of A, where P = {(a,0.9), (a,1.5), (b,0.75), (b,1.5)}

The sets of possible values of a and b are defined by:
Va=1[0,2);V3 =[0,4).
The sets of values of a and b for objects from U are respectively given by:
a(U) = {0.8,1,1.3,1.4,1.6} and
b(U) = {0.5,1,2,3}
O

A discretization process produces a partition of the value sets of the con-
ditional attributes into intervals. The partition is done so that a consistent
decision system is obtained from a given consistent decision system by a
substitution of any object’s original value in A by the (unique) name of the
interval(s) in which it is contained. In this way the size of the value sets of the
attributes may be reduced. If a given decision system is not consistent one
can transform it to the consistent decision system by taking the generalized
decision instead of the original one. Next it is possible to apply the above
method. It will return cuts with the following property: regions bounded by
them consist of objects with the same generalized decision. Certainly, one can
consider also soft (impure) cuts and induce the relevant cuts on their basis
(see the bibliography in [49]).



Rough Sets and Boolean Reasoning 15

Example 22 The following intervals are obtained in our example system:
[0.8,1); [1,1.3); [1.3,1.4); [1.4,1.6) for a);
[0.5,1); [1,2); [2,3) for b).

The idea of cuts can be introduced now. Cuts are pairs (a, ¢) where ¢ € V.
Our considerations are restricted to cuts defined by the middle points of the
above intervals. In our example the following cuts are obtained:

(a,0.9); (a,1.15); (a,1.35); (a,1.5);
(6,0.75); (b,1.5); (b,2.5).

Any cut defines a new conditional attribute with binary values. For exam-
ple, the attribute corresponding to the cut (a, 1.2) is equal to 0 if a(z) < 1.2;
otherwise it is equal to 1. O

Any set P of cuts defines a new conditional attribute ap for any a. Given
a partition of the value set of a by cuts from P put the unique names for the
elements of these partition.

Example 23 Let
P ={(a,0.9),(a,1.5), (b,0.75), (b,1.5)}

be the set of cuts. These cuts glue together the values of a smaller then 0.9,
all the values in interval [0.9,1.5) and all the values in interval [1.5,4). A
similar construction can be repeated for b. The values of the new attributes
ap and bp are shown in Tab. 1 (b). O

The next natural step is to construct a set of cuts with a minimal number
of elements. This may be done using Boolean reasoning.

Let A= (U, A,d) be a decision system where U = {z1,%2,...,2,},4 =
{a1,...,ap} and d : U — {1,...,r}. We assume V, = [l5,7,) C R to be
a real interval for any a € A and A to be a consistent decision system.
Any pair (a,c) where a € A and ¢ € R will be called a cut on V,. Let
P, = {[c§,ct),[ct,c8),---,[ck. ,ch. 1)} be a partition of V, (for a € A) into
subintervals for some integer k,, where [, = ¢§f < c¢f < c§ < ... <c} <
Ch.41 =raand Vo, =[cf,cf)U[cf,c5)U...Ulcq ,ci ;). It follows that any
partition P, is uniquely defined and is often identified with the set of cuts

{(a’actll)a (a,cg), ey (a,c%a)} CAxXR.

Given A = (U, A,d) any set of cuts P = J,.4 P, defines a new decision
system AP = (U, AP, d) called P-discretization of A, where A = {a¥ :a €
A} and aP(z) =i © a(z) € [¢f, ¢}, ) for z € U and i € {0, .., ko }-

Two sets of cuts P’ and P are equivalent, written P'=5P, iff A¥ =
AP’ The equivalence relation =4 has a finite number of equivalence classes.
Equivalent families of partitions will be not discerned in the sequel.

The set of cuts P is called A-consistent if 94 = 0,p, where 84 and 0,p
are generalized decisions of A and AF, respectively. An A-consistent set of
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cuts P¥" is A-irreducible if P is not A-consistent for any P C P¥". The
A-consistent set of cuts P°P! is A-optimal if card (P°P%) < card (P) for any
A-consistent set of cuts P.

It can be shown that the decision problem of checking if for a given de-
cision system 4 and an integer k there exists an irreducible set of cuts P in
A such that card(P) < k is NP-complete. The problem of searching for an
optimal set of cuts P in a given decision system A is N P-hard.

Despite these complexity bounds it is possible to devise efficient heuristics
that return semi-minimal sets of cuts. The simplest huristics is based on
Johnson’s strategy. The strategy is first to look for a cut discerning a maximal
number of object pairs and then to eliminate all already discerned object
pairs. This procedure is repeated until all object pairs to be discerned are
discerned. It is interesting to note that this heuristics can be realized by
computing the minimal relative reduct of the corresponding decision system.
The “MD heuristic” is analogous to Johnson’s approximation algorithm. It
may be formulated as follows:

ALGORITHM: MD-heuristics (A semi-optimal family of partitions )

1. Construct table A* = (U*, A*,d) from A= (U, A) where U* is the set
of pairs (z,y) of objects to be discerned by d and A* consists of attribute
c* for any cut ¢ and c* is defined by c*(z,y) = 1 if and only if ¢ discerns
z and y (i.e., z,y are in different half-spaces defined by c); set B= A*;

2. Choose a column from B with the mazimal number of occurrences of 1’s;

3. Delete from B the column chosen in Step 2 and all rows marked with 1
in this column,

4. If B is non-empty then go to Step 2 else Stop.

This algorithm searches for a cut which discerns the largest number of
pairs of objects (MD-heuristic). Then the cut ¢ is moved from A* to the
resulting set of cuts P; and all pairs of objects discerned by ¢ are removed
from U*. The algorithm continues until U* becomes empty.

Let n be the number of objects and let & be the number of attributes of
decision system A. The following inequalities hold: card (A*) < (n — 1) k and
card (U*) < @ It is easy to observe that for any cut ¢ € A* O (n?) steps
are required in order to find the number of all pairs of objects discerned by c.
A straightforward realization of this algorithm therefore requires O (kn?) of
memory space and O(kn?) steps in order to determine one cut. This approach
is clearly impractical. However, it is possible to observe that in the process of
searching for the set of pairs of objects discerned by currently analyzed cut
from an increasing sequence of cuts one can use information about such set of
pairs of objects computed for the previously considered cut. The MD-heuristic
using this observation [30] determines the best cut (for a given attribute) in
O (kn) steps using O (kn) space only. This heuristic is reported to be very
efficient with respect to the time necessary for decision rules generation as
well as with respect to the quality of unseen object classification.
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Let us observe that in the considered case of discretization the new fea-
tures are of the form a € V, where V C V, and V,, is the set of the values of
attribute a.

We report some results of experiments on data sets using this heuristic.
We would like to comment for example on the result of classification received
by application of this heuristic to Shuttle data (Table 3). The result concern-
ing classification quality is the same as the best result reported in [27] but
the time is of order better than for the best result from [27]. In the table we
present also the results of experiments with heuristic searching for features
defined by oblique hyperplanes. This heuristic has been developed using ge-
netic algorithm allowing to tune the position of hyperplane to the optimal
one [30]. In this way one can implement propositional reasoning using some
background knowledge about the problem.

In experiments we have chosen several data tables with real value at-
tributes from the U.C. Irvine repository. For some tables, taking into account
the small number of their objects, we have adopted the approach based on
five-fold cross-validation (CV — 5). The obtained results (Table 3) can be
compared with those reported in [9,27] (Table 2). For predicting decisions on
new cases we apply only decision rules generated either by the decision tree
(using hyperplanes) or by rules generated in parallel with discretization.

Names |[Nr of| Train. |Test.| Best
class.| table |table|results
Australian| 2 |690x14 | CV5 |85.65%
Glass 7 214x9 | CV5 |69.62%
Heart 2 270x13 | CV5 |82.59%
Iris 3 150x4 | CV5 [96.00%
Vehicle 4 |846x19 | CVH |69.86%
Diabetes 2 768x8 | CV5 |76.04%
SatImage | 6 |4436x36| 2000 |90.06%
Shuttle 6 [43500x7|14500|99.99%

Table 2. Data tables stored in the UC Irvine Repository

For some tables the classification quality of our algorithm is better than
that of the C4.5 or Naive -Bayes induction algorithms [55] even when used
with different discretization methods [9,27,15].

Comparing this method with the other methods reported in [27], we can
conclude that our algorithms have the shortest runtime and a good overall
classification quality (in many cases our results were the best in comparison
to many other methods reported in literature).

We would like to stress that inducing of the minimal number of the rele-
vant cuts is equivalent to computing of the minimal reduct of decision system
constructed from the discussed above system A* [30]. This in turn, as we have
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Data |Diagonal cuts/Hyperplanes
tables |#cuts| quality |#cuts| quality

Australian| 18 | 79.71% | 16 |82.46%
Glass 1441 | 67.89% 12 |70.06%
Heart 11+1| 79.25% |11+1|80.37%

Iris 7+2 | 92.70% | 6+2 | 96.7%
Vehicle 25 59.70% | 20+2 |64.42%
Diabetes | 20 | 74.24% | 19 |[76.08%
SatImage | 47 | 81.73% | 43 |82.90%
Shuttle 15 99.99% 15 199.99%

Table 3. Results of experiments on Machine Learning data.

shown, is equivalent to the problem of computing of minimal prime impli-
cants of Boolean functions. This is only illustration of a wide class of basic
problems of Machine Learning, Pattern Recognition and KDD which can be
reduced to problems of relevant reduct computation.

Our next illustrative example concerns symbolic (nominal, qualitative)
attribute value grouping. We also present some experimental results of heuris-
tics based on the developed methods in case of mixed nominal and numeric
attributes.

In case of symbolic value attribute (i.e., without pre-assumed order on
values of given attributes) the problem of searching for new features of the
form a € V is, in a sense, from practical point of view more complicated
than the for real value attributes. However, it is possible to develop efficient
heuristics for this case using Boolean reasoning,.

Let A = (U, A,d) be a decision table. Any function P, : V,, = {1,...,m,}
(where m, < |V,|) is called a partition of V,,. The rank of P,, is the value
rank (P,,) = |Pa; (Va;) |- The family of partitions {P,},cp is consistent with
B (B — consistent) iff the condition [(u,u') ¢ IND(B) and d(u) # d(u')
implies J4ep[Ps(a(n)) # Py(a(u'))]] holds for any (u,u') € U. It means that
if two objects u,u’ are discerned by B and d, then they must be discerned
by partition attributes defined by {P,},.p- We consider the following opti-
mization problem

PARTITION PROBLEM: sYMBOLIC VALUE PARTITION PROBLEM:
Given a decision table A = (U, A, d) and a set of attributes B C A, search for

the minimal B — consistent family of partitions (i.e., such B — consistent
family {P,},.p that }_ . grank (P,) is minimal).

To discern between pairs of objects we will use new binary features aﬁl
(for v # v') defined by a? (z,y) = 1 iff a(x) = v # v' = a(y). One can apply
the Johnson heuristic for the new matrix with these attributes to search for
minimal set of new attributes that discerns all pairs of objects from differ-
ent decision classes. After extracting of these sets, for each attribute a; we
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construct a graph I, = (V,, E,) where E, is defined as the set of all new
attributes (propositional variables) found for the attribute a. Any vertex col-
oring of I', defines a partition of V,. The colorability problem is solvable in
polynomial time for & = 2, but remains NP-complete for all k¥ > 3. But,
similarly to discretization, one can apply some efficient heuristic searching
for optimal partition.

Let us consider an example of decision table presented in Figure 1 and (a
reduced form) of its discernibility matrix (Figure 1).

Ala|[b][d

w1 | a1 | b1 || O M(A) ui U§ us . Ug
1 2 3

s | a1 | b2 || O Uus bb4 bb4 aa2, b a,137 b
uz | a2 | b 0 2%l pPl [a%l 1P a%2 b1
us a2 b §O fu Jail Byilaai  [bre  |mas. by

4 3101 2%l a1 b bP1 ag
us | a1 [ ba |[1]|=|UT a2 Asss b3 aa3

byl a1 ba b1
ug | a2 22 Ll |ue |aci, by |ach az;, b;2 |aa), b,
Uur | a2 1 a2l b1 2%l bP2 |a%2 b3 L5
ug as b2 1 Uug a37b a37b a37b bb4
b2 L)

ug | ag 24 } uio  |aay, b aa2, b,? |b,3 az2, b
U10 | a2 5

Fig. 1. The decision table and the discernibility matrix

b’

a3z 4

~r~oolp

NN e

Fig. 2. Coloring of attribute value graphs and the reduced table.
From the Boolean function f4 with Boolean variables of the form aj? one
can find the shortest prime implicant:
al Aa% Aa? Aa% AbPAb2 ADY2 ALY A Db
as a3 Qg aq ba ba bs b3 bs

which can be represented by graphs (see Figure 2).
We can color vertices of those graphs as it is shown in Figure 2. The colors
are corresponding to the partitions:

Pa(a1) = Pa(as) = 1;
P, (as) = Pa(ag) =2
Py (b1) = Py (b2) =P (b5) = 15
B, (b3) = Py (bs) = 2.

At the same time one can construct the new decision table (Figure 2).
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One can extend the presented approach (see e.g., [33]) to the case when
in a given decision system nominal as well as numeric attributes appear.
The received heuristics are of very good quality. Experiments for classifica-
tion methods (see [33]) have been carried over decision systems using two
techniques called “train-and-test” and “n-fold-cross-validation”. In Table 4
some results of experiments obtained by testing the proposed methods: MD
(using only discretization based on MD-heurisctic with Johnson approxima-
tion strategy [30], [62]) and MD-G (using discretization and symbolic value
grouping [32], [62]) for classification quality on some data tables from the
“UC Irvine repository” are shown. The results reported in [12] are summa-
rized in columns labeled by S-ID3 and C4.5 in Table 4). Let us note that
the heuristics MD and MD-G are also very efficient with respect to the time
complexity.

Names of | Classification accuracies
Tables [S-ID3]C4.5] MD [MD-G
Australian|78.26 |85.36(83.69| 84.49
Breast (L)|62.07|71.00/69.95| 69.95
Diabetes [66.23 [70.84|71.09| 76.17
Glass 62.79 165.89|66.41| 69.79
Heart 77.78 |77.04|77.04| 81.11
Iris 96.67 |94.67|95.33| 96.67
Lympho |73.33 |77.01|71.93| 82.02
Monk-1 |81.25(75.70| 100 | 93.05
Monk-2 |69.91 [65.00(99.07| 99.07
Monk-3 |90.28 [97.20(93.51| 94.00
Soybean | 100 (95.56| 100 | 100
TicTacToe|84.38 |84.02| 97.7 | 97.70

| Average [78.58[79.94[85.48] 87.00 |

Table 4. Quality comparison of various decision tree methods. Abbreviations: MD:
MD-heuristic; MD-G: MD-heuristic with symbolic value partition

In the case of real value attributes one can search for features in the feature
set that contains the characteristic functions of half-spaces determined by
hyperplanes or parts of spaces defined by more complex surfaces in the multi-
dimensional spaces. Genetic algorithms have been applied in searching for
semi-optimal hyperplanes [30]. The reported results are showing substantial
increase in the quality of classification of unseen objects but at the price of
increased time for searching for the semi-optimal hyperplane.

Decision rules

Reducts serve the purpose of inducing minimal decision rules. Any such rule
contains the minimal number of descriptors in the conditional part so that
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their conjunction defines the largest subset of a generalized decision class
(decision class, if the decision table is deterministic). Hence, information in-
cluded in conditional part of any minimal rule is sufficient for prediction of
the generalized decision value for all objects satisfying this part. The condi-
tional parts of minimal rules define largest object sets relevant for generalized
decision classes approximation. It turns out that the conditional parts of min-
imal rules can be computed (by using Boolean reasoning) as so called reducts
relative to objects or local reducts (see e.g., [61], [3]). Once the reducts have
been computed, the conditional parts of rules are easily constructed by lay-
ing the reducts over the original decision system and reading off the values.
In the discussed case the generalized decision value is preserved during the
reduction. One can consider stronger constraints which should be preserved.
For example, in [67] the constraints are described by probability distributions
corresponding to information signatures of objects. Again the same method-
ology can be used to compute the reducts corresponding to these constraints.

The main challenge in inducing rules from decision systems lies in deter-
mining which attributes should be included in the conditional part of the
rule. Using the outlined above strategy first the minimal rules are computed.
Their conditional parts describe largest object sets (definable by conjunc-
tions of descriptors) with the same generalized decision value in a given de-
cision system. Hence, they create the largest sets still relevant for defining
the decision classes (or sets of decision classes when the decision system is
inconsistent). Although such minimal decision rules can be computed, this
approach can result in set of rules of not satisfactory classification quality.
Such detailed rules will be overfit and they will poorly classify unseen cases.
Shorter rules should rather be synthesized. Although they will not be per-
fect on the known cases there is a good chance that they will be of high
quality when classifying new cases. They can be constructed by computing
approximations of the above mentioned reducts. Approximations of reducts
received by drooping some descriptors from the conditional parts of minimal
rules define larger sets, not purely included in decision classes but included
in a satisfactory degree. It means that these shorter descriptions can be more
relevant for decision class (concept) approximation than the exact reducts.
Hence, e.g., one can expect that when by dropping the descriptor from the
conditional part we receive the description of the object set almost included
in the approximated decision class than this descriptor is a good candidate
for dropping.

Several other strategies have been implemented. Methods of boundary re-
gion thinning [79] are based, e.g., on the idea that sets of objects included in
decision classes in satisfactory degree can be treated as parts of the lower ap-
proximations of decision classes. Hence the lower approximations of decision
classes are enlarged and decision rules generated for them are usually stronger
(e.g., they are supported by more examples). The degree of inclusion is tuned
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experimentally to achieve, e.g., high classification quality of new cases. One
can also adopt an idea of dynamic reducts for decision rule generation.

For estimation of the quality of decision classes approximation global
measures based on the positive region [61] or entropy [11] are used.

When a set of rules has been induced from a decision system containing a
set of training examples, they can be used to classify new objects. However, to
resolve conflict between different decision rules recognizing new objects one
should develop strategies for resolving conflicts between them when they are
voting for different decisions (see the bibliography in [49] and [50]). Recently
[71], it has been shown that rough set methods can be used to learn from
data the strategy for conflict resolving between decision rules when they
are classifying new objects contrary to existing methods using some fixed
strategies.

a-reducts and association rules

In this section we discuss a relationship between association rules [2] and
approximations of reducts being basic constructs of rough sets [61], [62], [34].

We consider formulas called templates being conjunction of descriptors.
The templates will be denoted by T, P, Q and descriptors by D with or with-
out subscripts. By support4(T) is denoted the cardinality of || T||4 and by
confidence A(P — Q) is denoted the number support 4(P A Q)/support 4(P).

The, mentioned above, reduct approximations are descriptions of the ob-
ject sets matched by templates. They describe these sets in an approximate
sense expressed by coefficients called support and confidence.

There are two main steps of many developed association rule generation
methods for given information system A and parameters of support s and
confidence ¢:

1. Extraction from data as many as possible templates T = D1 A Dy...A Dy,
such that support4(T) > s and support 4(T A D) < s for any descriptor
D different from descriptors of T (i.e., generation of maximal templates
among those supported by more than s objects);

2. Searching for a partition T = P A Q for any of generated template T
satisfying the following conditions:
(a) support(P) < M
(b) P has the shortest length among templates satisfying the previous

condition.

The second step can be solved using rough set methods and Boolean
reasoning approach.

Let T = Dy A Dy A ... A Dy, be a template with support4(T) > s.
For a given confidence threshold ¢ € (0;1) the decomposition T =P A Q is
called c-irreducible if confidences(P — Q) > ¢ and for any decomposition
T = P’ A Q' such that P’ is a sub-template of P, we have

confidence,(P' - Q') <c.
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Now we are going to explain that problem of searching for c-irreducible
association rules from the given template is equivalent to the problem of
searching for local a-reducts (for some «) from a decision table. The last
problem is a well known problem in rough set theory.

Let us define a new decision table Alt = (U, A|r,d) from the original
information system A and the template T by

1. Alr = {ap,,ap,,--,aD,,} I8 a set of attributes corresponding to the

_ [ 1if the object u satisfies D,

~ | 0 otherwise.

2. the decision attribute d determines if the object satisfies template T, i.e.,
d(u) { 1 if the object u satisfies T,

descriptors of T such that ap, (u)

0 otherwise.

The following facts [62], [34] describe the relationship between association
rules and approximations of reducts.
For the given information table 4 = (U, A), the template T, the set of

descriptors P. The implication (/\ piep Di — Ap,¢p Dj) is

1. 100%-irreducible association rule from T if and only if P is a reduct in
Alr.

2. c-irreducible association rule from T if and only if P is an a-reduct of
Alr, where o = 1 — (1 —1)/(2 — 1), n is the total number of objects
from U and s = support 4(T).

One can show, that the problem of searching for the shortest a-reducts
is NP-hard [34]. From the above facts it follows that extracting association
rules from data is strongly related to extraction from the data reduct approx-
imations [34] being basic constructs of rough sets.

The following example illustrates the main idea of our method. Let us
consider the following information table A with 18 objects and 9 attributes.

Assume the template

T=(a1=0A(az=2)A(as=1)A(ag =0)A (ag = 1)
has been extracted from the information table 4. We have
support(T) = 10 and length(T) = 5.

The new constructed decision table A|r is presented in Table 5. The discerni-
bility function for A|r is of the following form:

f(Dl,DQ,D3,D4,D5) = (D2 VD4V D5) A (D1 VD3V D4) A (D2 VD3V D4)
/\(D1 VDyV Dy VD4) A (D1 V Ds VD5)
/\(D2 VD3V D5) A (D3 VD4V D5) A (D1 VD5)
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.A al|az|a3 (a4 (a5 |0s|Q7(a8|Qg9

il (0|1 [1]1(80|2(2(|2]|3

ug |0]1]12]|1|81|0 |aa|l |aa

uz |0]12|2|1|82|0 |aa|l |aa

usa (0|1 ]2]1(80]|0 [aa|l |aa

us |1|11]|12]|2|81|1 |aa|l |aa

ue [0 21|12 (81|1 |aa|l |aa

ur |1]12|1]|2|83|1 |aa|l |aa

ug |02 |2|1|81|0 |aa|l |aa

ug |01112]|1|82|0 |aa|l |aa

u10[{0 |3 [2|1(84[0 |aa|1l |aa

11| 013 [1|80[0 |aa|2 |aa

ui2( 0|2 (2|2 (82|0 |aa|2 |aa

uiz(0[2(2|1(81|0 |aa|l |aa

u14({ 03|22 (812 |aal2 |aa

w15/ 04|12 |1(82(0 |aa|l [aa

u1e| 03|12 |1|83(0 |aa|l |aa

17|01 ]|2|1(84(0 |aa|l [aa

uig| 1|2 (2(1|82|0 |aa|2 |aa
Alr| D1 Do D3 Dy Ds d

a1 =0lazg =2|aa=1|ag =0|lag =1
U1 1 0 1 0 0
Ug 1 1 1 1 1 1
us 1 1 1 1 1 1
Us 1 1 1 1 1 1
us 0 1 0 0 1
Ug 1 0 0 0 1
ur 0 0 0 0 1
us 1 1 1 1 1 1
Ug 1 1 1 1 1 1
U0 1 1 1 1 1 1
U1l 1 0 1 1 0
U112 1 0 0 1 0
Uu13 1 1 1 1 1 1
U114 1 1 0 0 0
U5 1 1 1 1 1 1
Uig 1 1 1 1 1 1
U7 1 1 1 1 1 1
U1 0 1 1 1 0

Table 5. The example of information table A and template T support by 10 objects
and the new decision table A|r constructed from A and template T

After simplification we obtain six reducts corresponding to the prime impli-
cants:

f(Dl, Ds, D3, D4,D5) = (D3 /\D5) \% (D4 /\D5) \% (D1 ADs /\D3) \% (D1 ADs A
D)V (D1 A D3 ADs)V (D1 AD3 ADy) for the decision table A|r. Thus, we
have found from T six association rules with (100%)-confidence.

If ¢ = 90% it means that we would like to find a-reducts for the deci-
sion table A|r, where a = 1 — ¢ j = 0.86. Hence we would like to search
for a set of descriptors that covers at least [(n—s)a)] =[8-086] =7
elements of the discernibility matrix M(A|r). One can see that the follow-
ing sets of descriptors: {D1, D2}, {D1, D3}, {D1, D4}, {D1,Ds}, {D2, Ds},
{D2, D5}, {Ds, D4} have nonempty intersection with exactly 7 members of
the discernibility matrix M(A|r). In Table 6 we present all association rules
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D3 ADs — D1 ADa ADy
DisADs — Dy ADas A D3
M(.Al'r) U2, Uz, Ua, Ug, Ug D1 ADs AD3s — Dy A Dg
U10, Y13, U15, U16, U1T D1y ADs ADy — D3 A Ds
U1 Dy V Dy V Ds D1 ADs ADs — D3 A Dy
Uus D1V D3V Dy = 1009% — D1 AD3 ADy — Da A Dg
Uug D>V D3V Dy
ur D1V DoV D3V Dy D1 ADys — D3 ADy A Dg
U1 D1V D3V Dy = go% — D1 AD3 — D3 ADy A Dg
U1 Ds Vv D3V Dy D1 ADy — Do AD3 A Dg
Ul4a D3V Dy V Dy D1 ADs — Do AD3 A Dy
U1 D1V Dj Do AD3 — Dy ADy A Dg
Do ADs — D1 AD3 A Dy
D3 ADy — Dy ADas A Dy

Table 6. The simplified version of discernibility matrix M(A|r) and association
rules

corresponding to those sets. Heuristics searching for a-reducts are discussed
e.g. in [34].

Decomposition of large data tables

Several methods based on rough sets have been developed to deal with large
data tables, e.g., to generate strong decision rules for them. We will discuss
one of the methods based on decomposition of tables by using patterns, called
templates, describing regular sub-domains of the universe (e.g., they describe
large number of customers having large number of common features).

Long templates with large support are preferred in many Data Mining
tasks. Several quality functions can be used to compare templates. For ex-
ample they can be defined by guality’ (T) = support 4(T) + length(T) and
quality? (T) = support 4(T) x length(T). Problems of high quality templates
generation (by using different optimization criteria) are of high computational
complexity. However, efficient heuristics have been developed for solving them
(see e.g., [2,77]), [32]).

Extracted from data templates are used to decompose large data tables.
In consequence the decision tree is built with internal nodes labeled by the
extracted from data templates, and outgoing from them edges by 0 (false)
and 1 (true). Any leaf is labeled by a subtable (subdomain) consisting of all
objects from the original table matching all templates or their complements
appearing on the path from the root of the tree to the leaf. The process
of decomposition is continued until the size of subtables attached to leaves
is feasible for existing algorithms (e.g., decision rules for them can be gen-
erated efficiently) based on rough set methods. The reported experiments
are showing that such decomposition returns interesting patterns of regular
subdomains of large data tables (for references see [32], [35], [49] and [50]).

It is also possible to search for patterns that are almost included in the
decision classes, i.e., default rules [29]. For a presentation of generating default
rules see the bibliography in [49] and [50].
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Conclusions

There has been done a substantial progress in developing rough set methods
(like methods for extraction from data rules, partial or total dependencies,
methods for elimination of redundant data, methods dealing with missing
data, dynamic data and others reported e.g., in [6], [7], [8], [16], [18], [24],
[29], [30], [37], [49], [50], [52], [81]). New methods for extracting patterns from
data (see e.g., [21], [35], [29]), [20], [43]), decomposition of decision systems
(see e.g., [35]) as well as a new methodology for data mining in distributed
and multiagent systems (see e.g., [48]) have been reported. Recently, rough
set based methods have been proposed for data mining in very large relational
data bases.

There are numerous areas of successful applications of rough set software
systems (see [50] and http://www.idi.ntnu.no/~aleks/rosetta/ for the
ROSETTA system). Many interesting case studies are reported (for references
see e.g., [49], [50], [37] and the bibliography in these books, in particular [7],
[16], [20], [72], [81))-

We have mentioned some generalizations of rough set approach like rough
mereological approach (see e.g., [53], [45]). Several other generalizations of
rough sets have been investigated and some of them have been used for real
life data analysis (see e.g., [79], [5], [39], [14], [22], [38], [25], [59], [48]).

Finally, we would like to point out that the algebraic and logical aspects
of rough sets have been intensively studied since the beginning of rough set
theory. The reader interested in that topic is referred to the bibliography in
[49].
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