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Summary. This chapter addresses issues concerning a problem of constructing an optimal
classification algorithm. The notion of a parameterized approximation space is used to model
the process of classifier construction. The process can be viewed as hierarchical searching for
optimal information granulation to fit a concept described by empirical data. The problem of
combining several parameterized information granules (given by classification algorithms) to
obtain a global data description is described. Some solutions based on adaptive methods are
presented.

1 Introduction

Many practical, complex problems cannot be solved efficiently (e.g., because of
computational limitations) without decomposing them intoeasier subproblems. The
hierarchical approach to problem solving is widely known and used, as in the case
of a control problem (layered learning[32]) or decomposition of large databases
in knowledge discovery in databases (KDD) [10]. Granular computing [12, 24, 36]
(a new paradigm in computer science based on the notion of information granula-
tion), when employed as machine learning, machine perception, and a KDD tool,
also uses the advantages of a hierarchical structure.

This chapter addresses issues concerning the problem of constructing an optimal
classification algorithm in KDD applications. Suppose thatdata is stored withinde-
cision tables[14], where each training case (elementary information granule) drops
into one of predefined decision classes. By assumption, all available information
about the universe of objects (cases) is collected in the decision table (orinforma-
tion system)

� � �
U �A�d�, where each attributea �A is identified with a function

a : U �Va from the universe of objectsU in the setVa of all possible values ofa
and valuesvd �Vd of d ��A (a distinguished decision attribute) correspond to mutu-
ally disjoint decision classes of objects. We will denote these classes byD1 � � � � �Dk,
whereDi 	U .

The aim of data analysis is to construct an understandable description of data or
a classifier (an algorithm that can classify previously unseen objects as members of
appropriate decision classes). Methods of constructing ofclassifiers or descriptions
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can be regarded as tools for data generalization, i.e., tools that construct more and
more general descriptions in terms of a hierarchy of information granules. Classi-
fiers based on the rough set theory [14–17] are considered in this chapter.

The main notion of the rough set theory is theindiscernibility relation. Any two
objectsu1�u2 �U are indiscernible by a set of attributesB 	A [which is denoted by�
u1 �u2� � IND

�
B�] iff there is no attributeb �B such thatb

�
u1� ��b

�
u2�. An indis-

cernibility class of objectu �U is the set of objects (denoted as�u�B) indiscernible
with u: �u�B � �

u� �U : �b�Bb
�
u� �b

�
u����

A decision reduct B	A is the minimal (in terms of inclusion) set of attributes that
is sufficient to discern any pair of objects from different decision classes, supposing
that the whole set of attributes discerns the pair:IND

�
B� 	 IND

��
d��� IND

�
A�.

Let us define the following rough set based notions:

Definition 1. Let indiscernibility relationIND
�
B� be given.The upper approxima-

tion of a setX is defined as

X
� �

u �U : X 	 �u�B �� /0��
The lower approximationof a setX is defined by

X
� �

u �U : �u�B 	X��
Definition 2. The rough inclusionof setY in X is defined by

µ
�
Y�X� � 
 �X�Y ��Y � if Y �� /0

1 otherwise.

The rough membershipof objectx in setX based on a set of attributesB is defined
by

µB
X
�
x� � X 	 �x�B �x�B  �

Indiscernibility classes are related to different levels of information granulation. El-
ementary granules correspond to�u�A classes (based on the whole set of attributes);
everyB �A corresponds to a higher level granule, which may be used as a base for
decision rule:

a1
�
u� � v1 � � � ��a j

�
u� � v j

��d
�
u� �vd � (1)

for B
� �

a1� � � � �a j �.
A notion of approximation space, a theoretical tool for data description with infor-
mation granules is presented in the next sections of this chapter. A general compo-
sition scheme of data models (regarded as approximation spaces) into one classifier
is presented as well.

The reader can find more details on the important role of approximation spaces
in the process of information granule construction in Chap.3.
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2 Classification Algorithms

2.1 Approximation Spaces

The notion of anapproximation space(see, e.g., [4, 15, 21–23, 25–27]) may be
regarded as an extension of rough set theory. It is a tool for describing concepts not
only in terms of their approximations but also in terms of thesimilarity of objects
and concepts (see e.g., [15, 23, 25]). The notion of approximation space defined
below is an extended form of definitions known from the literature (for more infor-
mation see also Chap. 3 and [20]).

Definition 3. An approximation spaceis a tupleAS
� �

U �I �R �ν�, where
�U is a set of objects.
� I : U ��P

�
U � is a function mapping every object fromU into a subset (called a

neighborhood), where�u�U u � I
�
u��

�
R 	P

�
U � is a family of subsets ofU (interpreted as aset of templates, or infor-

mation granules, which are used to describe a concept).
�ν : P

�
U � �P

�
U � �� �0�1� is a function (interpreted as thedegree of inclusionof

subsets ofU), where (see [23, 26])

1. �A�U ν
�
A�A� �1.

2. �A�U ν
�
/0 �A� �1.

3. �A�B�C�U ν
�
A�B� �1 � ν

�
C�B� �ν

�
C�A�.

An approximation space determines a language of describingconcepts inU . It is
useful especially in cases of vague, inaccurate, and incomplete descriptions of data.
FunctionI expresses the idea of the indiscernibility of objects (a result of incom-
pleteness of object descriptions), whereas familyR determines a way of generaliz-
ing information about objects (which allows us to deal with inaccurate and vague
data).R may be defined, e.g., by using languageL of formulas based on descriptors
ai
�
u� �v as atomic formulas (fora �A, v �Va) and operation “�”. In this case [27],

RL
� �

rα : α �L�� (2)

whererα 	U corresponds to the semantics of formulaα in setU .

A goal of the KDD process in both a descriptive and predictivesense is to provide
the best approximation of (one or more) conceptD �U based on known data by
optimal information granulation. For a prediction task, the approximation takes the
form of aclassification algorithm— a function mapping vectors of values of con-
ditional attributes into the set of decision classes

�
D1� � � � �Dk�. Selected decision

classDi 	U is described byASas a rough set with upper and lower approximations
given by

Di
� �

R�R : R�Di ��/0
R; Di

� �

R�R : R�Di

R�
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Definition 4. Let
�

1
� �

U1 �A�d� be a decision table (training data set) andAS
�

�
U �I �R �ν� be an approximation space, whereU1 	U . Let D 	P

�
U � be a partition

of U onto disjoint decision classesD
� �

D1� � � � �Dk�, and let functions

ρ : R � �
/0 �1�2� � � � �k�

wherek
� D and

Φ :
��

/0 �1� � � � �k�� �0�1��� �� �
/0 �1� � � � �k�

be given.The classification algorithmbased onASandρ �Φ is a mapping

CAAS�D�ρ �Φ : U �� �
/0 �D1�D2 � � � � �Dk�

defined as

CAAS�D�ρ �Φ
�
u� �Φ

�
ρ
�
R1��ν �I �u��R1� � � � � �ρ�Rn��ν �I �u��Rn�� � (3)

wheren
� R . (We will omit subscriptsAS�D �ρ �Φ for simplicity).

Typically, a given test objectu is matched against templates from the familyR (e.g.,
the left–hand sides of decision rules), and the best matching R�R is selected. Then
the most frequent decision class inR is taken as a result of the classification ofu. In
most cases,ρ is defined as

ρ
�
R� �

�
argmaxi�1��k �ν�R�Di �� for maxi�1��k �ν�R�Di �� �0
/0 otherwise.

(4)

If an object can be matched to more than one templateR, the final answer is selected
by voting:

Φ ��v1 �x1�� � � � � �vn �xn�� � �
argmaxi�1��k�∑ j�n: vj

�i x j � if � jx j �0
/0 if � j x j

�
0� (5)

for n
� R , i.e., given a set of partial answersvi and corresponding coefficientsxi �

one should select the most popular answer (in terms of the sumof xi). The coeffi-
cients may be regarded as support of decision, credibility,or conviction factor, etc.
For formula 3, it is the coefficient of relevancy of templateRi , i.e., the degree of
inclusion of the test object inRi .

Given templateR may belong to the upper approximation of more than one de-
cision class. The conflict is resolved by functionρ. Alternatively, the definition of
the classification algorithm may be extended onto sets of decision classes or even
onto probability distributions over them:

CA : U ��∆k �
where∆k denotes thek-dimensional simplex:∆k � �

x � �0�1�k : ∑k
i�1xi

�
1�. In

more general cases, the classification algorithm may take into account the degree of
inclusion of an objectu in the templateR as well as the inclusion ofR in decision
classes.
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2.2 Parameterized Approximation Spaces

The notion of aparameterized approximation spacewas introduced [18, 35] to pro-
vide more flexible, data-dependent description language ofthe setU . By ASξ, we
will denote1 an approximation space parameterized with a parameter vector ξ �Ξ.
The problem of optimal classifier construction is regarded as an optimization prob-
lem of finding optimalξ̂ �Ξ, i.e., of finding a vector of parameters such thatAŜξ
generates an optimal (in the sense of, e.g., cross-validation results) classification al-
gorithm. Parameterξ is often used to maintain a balance between the generality of
a model (classifier) and its accuracy.

Example 1 An approximation space based on the set of attributes B	A of infor-
mation system

� � �
U �A�d� (see [26]). Let

1� I �u� � �u�A �
2�R � ��u�B : u �U ��
3� ν�X1 �X2� �µ

�
X1�X2��

for X1 �X2 	U, where µ is a rough inclusion function (Def. 2). Then AS
� �

U �I �R �ν�
is an approximation space related to a partition of the set U into indiscernibility
classes of the relation IND�

�
B�. If we assume that B is a decision reduct of consis-

tent data table
�

, then familyR corresponds to a set of consistent decision rules
(i.e., for all R�R , there is a decision class Di such that R	Di ). Every template
R �R corresponds to a decision rule r of the form of the conjunction of ai

�
u� � v j

descriptors, where ai �B, vj �Vai .

Now, let ASB�α, where B	A andα � �0�1�, be a parameterized approximation space
defined as follows (see [37, 39]):

1� I �u� � �u�A �
2�R � ��u�B : u �U ��
3� ν�X1 �X2� �

�
µ
�
X1�X2� if µ

�
X1�X2� �α

0 otherwise.

A classification algorithm based on ASB�α works as follows: for any test object u�
U, find a template R matching it (i.e., a class of training objects identical to u with
respect to attributes B), then check which is the most frequent decision class in a set
R. If the most frequent decision class Di covers at leastα of R [i.e., µ

�
R�Di � �α],

object u is classified as a member of Di [i.e., ρ
�
R� � i]. Otherwise, it is unclassified.

The goal of the above rough set based adaptive classificationalgorithm is to find
such parameters

�
B�α� that the approximation spaceASB�α generates the best clas-

sifier. One can see that with parameterB, we adjust the generality of the model (the

1 The notion of a parameterized approximation space is regarded in the literature asAS$�� �
�
U �I$ �ν��. The notation used in this chapter is an extension of the classical case.
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smallerB is, the more general set of rules is generated, but also the less accurate
rules we obtain). On the other hand, parameterα adjusts the degree of credibil-
ity of the model obtained: forα

�
1, there may be many unclassified objects, but

only credible rules are taken into account; for smallα, there may be no unclassified
objects, but more objects are misclassified.

Example 2 Let ρ be a metric on a set of objects U divided into disjoint decision
classes D

� �
D1 � � � � �Dm�. For each u�U and for test data set U1, let σu�ρ be a

permutation of
�
1� ��� U1 �, such that

1 � i � j � U1 � ρ
�
u�uσu�ρ �i�� �ρ

�
u�uσu�ρ �j ��

for uσu�ρ �i� �uσu�ρ �j � �U1.

Let kNNρ : U �� �2U1 be a function mapping each object u to a set of its k nearest
neighbors according to metricρ:

kNNρ
�
u�k� � �

uσu �1� � � � � �uσu �k�� �
Let Ik�ρ

�
u� � kNNρ

�
u�k� for a given k; letR

� �
R	U : R� k� andν

�
X1 �X2� �

µ
�
X1�X2� (cf. Definition 2). Assume thatρ andΦ are defined by (4) and (5). Then

AS
� �

U �Ik �R �ν� is an approximation space, and CAAS�D�ρ �Φ is a classification al-
gorithm identical to the classical k-nearest neighbors algorithm. For each test object
u, we check its distance (given by metricρ) to all training objects from U1. Then we
find the k nearest neighbors [set Ik�ρ

�
u�] and define template R

�
Ik
�
u�. Object u is

then classified into the most frequent decision class in R.

Let n
� Aand w��m. Letρw be the following metric:

ρw
�
u1 �u2� �

n

∑
i�1

wi ai
�
u1��ai

�
u2��

The approximation space defined above may be regarded as the parameterized ap-
proximation space ASk�w

� �
U �Ik�ρw �R �ν�, based on the k nearest neighbors and

metricρw. It is known that the proper selection of parameters (metric) is crucial for
k-NN algorithm efficiency [2]).

3 Modeling Classifiers as Approximation Spaces

The efficiency of a classifier based on a given approximation space depends not
only on domain-dependent information provided by values ofattributes but also on
its granularity, i.e., level of data generalization. Proper granularity of attribute values
depends on the knowledge representation (data descriptionlanguage) and the gener-
alization techniques used in the classification algorithm.In cases of data description
by an approximation spaceAS

� �
U �I �R �ν�, the generalization is expressed by a



6. Adaptive Aspects of Combining Approximation Spaces 145

family R of basic templates (granules) that form a final data model.

Some classification methods, especially these based on decision rules of the form (1),
act better on discrete domains of attributes. Real-valued features are often transfor-
med by discretization, hyperplanes, clustering, principal component analysis, etc.
[6, 9, 11]. One can treat the analysis process on transformeddata either as modeling
of a new data table (extended by new attributes given as a function of original ones)
or, equivalently, as an extension of model language. The latter means, e.g., change
of metric definition in thek-NN algorithm (Example 2) or extension of descriptor
language by interval descriptors “a

�
u� � �ci �ci�1�” in a rule based system.

An example of a new attribute construction method was presented by the author
in [29]. A subset of attributesB

�
b1 � � � � �bm 	A is selected; then an optimal (in

the sense of some quality measure) linear combination of them is constructed by an
evolutionary strategy algorithm:

h
�
u� �α1b1

�
u�� � � ��αmbm

�
u��

where��α � �
α1 � � � � �αm� ��m is a vector of coefficients (assume���α �� 1). Note

that every linear combinationh corresponds to one vector of sizen
� A. An ap-

proximation space is based on a set of attributes containinga new one that is a
discretization ofh (see Fig. 1). If the process of constructing a classificationsystem
involves extension of

�
with k new attributes based on linear combinations, one

may regard the process as optimization of an approximation spaceASξ���α1 �������αk
pa-

rameterized by a set of parametersξ (see Example 1) and a set of vectors��α1 � � � � ���αk

representing linear combinations of attributes.

Fig. 1. A linear combination of two attributes and its discretization

The more general approach is presented in [35]. A model basedon the notion of a
relational information system [33], originally designed for relational database analy-
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Fig. 2.Two general methods of adaptive combining granules:(a) by weights,(b) by adjusting
model parameters on the lower level of a synthesis tree

sis, can be easily extended to cover virtually all possible transformations of existing
data. The inductive closure

� � of an information system (or a relational information
system)

�
is a decision table closed by an operation of adding (inequivalent) new

attributes based on a given family of operations. Such a closure
� � is always finite

since there is only a finite number of inequivalent attributes of any decision table
�

.
Hence, any classifying system based on transformed attributes may be modeled by
a parameterized approximation spaceASξ�B, whereξ is a set of parameters (influ-
encing, e.g., a generalization level of rules) andB �A� is a subset of attributes of
inductive closure of

�
.

When a final set of attributes (original, transformed, or created based on, e.g., rela-
tions and tables in relational database) is fixed, the next phase of classifier construc-
tion begins: data reduction and the model creation process.In rough set based data
analysis, both steps are done by calculating reducts (exactor approximate) [28, 31,
35, 37] and a set of rules based on them. Unfortunately, a set of rules based on a
reduct is not general enough to provide good classification results. A combination
of rule sets (classifiers), each of them based on a different reduct, different trans-
formations of attributes, and even on different subsets of training objects, must be
performed.

4 Combining Approximation Spaces

One may distinguish between two main adaptive methods of granule combination
(see Fig. 2). The first denoted (a) is based on a vector of weights (real numbers)
used in a combination algorithm to adjust, somehow, the influence of a granule on
a final model. In this case, granules (given by classificationalgorithms) are fixed,
and the best vector of weights is used just to “mix” them (see the next section for
more details). The second method denoted (b) consists of changing parameters of in-
put granules, e.g., their generality, for a fixed combining method. In this section, we
will consider one of the simplest adaptive combining methods: by zero–one weights,
which is equivalent to choosing a subset of classifiers and combining them in a fixed
way. We will refer to this subset as an ensemble of classifying agents (algorithms
represented by an approximation space).
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Fig. 3. A combination of approximation spaces (algorithms) and a new object classification

Assume that a classification systemCA is composed ofk classifying agents, each
of them based on its own parameterized approximation spaceAS1� � � � �ASk and on
its own subset of training examplesU1� � � � �Uk [using the sameI

�
u� and ν func-

tions, limited toUi ]. Let us define an approximation space as a combination of
AS1� � � � �ASk.

Definition 5. Operation of synthesisof approximation spacesAS1, . . . , ASk, where
ASi

� �
Ui �Ii �Ri �νi � and Ii

�
I Ui , νi

�
ν Ui , is a mappingS

�
AS1� � � � �ASk� � AS�,

whereAS� � �
U �I �R �ν� and

U
��

i�1��kUi �
R

��
i�1��k Ri �

The classification of a new objectu usingAS� consists of finding all appropriate
templatesR [i.e., R such thatν �I �u��R� is large enough, see Definitions 3 and 4].
Then all values ofρ

�
R� are collected, and the final answer is calculated by voting

(functionΦ).

Supposing that subsetsUi are significantly less thanU , one can see that templates
(in terms of subsets of objects matched)Ri �j � Ri are relatively small as well. In
practice, one should use a method of generalizing these templates onto the whole
universeU .

If, for example, a familyRi is defined by a reductB 	A (see Example 1)

Ri
� ��u�B : u �Ui ��

then it will be generalized onto

R �i � ��u�B : u �U ��
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and a definition of synthesizedS
�
AS1� � � � �ASk� �AS� contains the following fami-

ly R :
R

� �

i�1��kR �i �
In [35], some remarks concerning connections between the above operations and
rough mereology [16] are presented. A classification systembased on a family of
approximation spaces may be regarded as a multiagent systemwith one special
agent for result synthesis. When classifying a new objectu, the synthesizing agent
sends a request for delivery of partial descriptions (templatesR) of the object to
subordinate agents. Then a complete description is synthesized based on Definition
5.

Note that a set of classifying agents may work on separate subsetsU1 � � � � �Un of
setU (e.g., in a distributed data mining system). Suppose that a set of approxima-
tion spacesAS1, . . . ,ASn was created based on reducts (see Example 1). EachASi is
composed of a set of decision reducts, each of them related toone templateR �Ri

(R is a set of objects matching the left–hand side of the rule) and a decision value
d
�

ρ
�
R�. We tend to obtain the optimal synthesis ofAS1, . . . ,ASn, based on a mea-

sureΨ of classification algorithm quality.

Let S
�
AS1� � � � �ASn� �AS�, whereAS� � �

U �I �R �ν�. Suppose that

U
��

i�1��nUi �
R

��
i�1��n Ri �

for ASi
� �

Ui �I �Ri �ν�. The spaceAS� is composed of all agents (approximation
spaces) from the familyAS1, . . . ,ASn; our goal is to choose a subsetJ

� �
j1 � � � � � j �J ��

that corresponds to the synthesized approximation space,

ASJ
�

S
�
ASj1 � � � � �ASj �J ��� (6)

providing optimal classification algorithmCAASJ . Let Pos�
�
CA� andNeg�

�
CA� de-

note a number of testing objects from table� properly and improperly (respectively)
classified byCA. Let Ψ be a quality measure based on classification results on� ,
satisfying the following conditions:

Pos� �
CA1

� �Pos� �
CA2

� � Neg� �
CA1

� � Neg� �
CA2

� � Ψ
�
CA1

� �Ψ
�
CA2

��
Pos� �

CA1
� � Pos� �

CA2
� � Neg� �

CA1
� � Neg� �

CA2
� �

� �
Ψ

�
CA1

� �Ψ
�
CA2

��� �J1
� 	 �J2

�� �
(7)

whereCA1
�

CAASJ1
, CA2

�
CAASJ2

, andJ1, J2 are subsets of agents. The above
conditions mean that if two subsets of agents achieve the same results on a test table
� , we would prefer the smaller one.

Assume thatCAASJ is based on a voting functionΦ, such that
��i vi

�
v
vi

�
/0�� ��i vi

�
v� ��Φ ��v1 �1�� � � � � �vk �1�� � v� (8)
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The following fact is true for families of classifying agents (see [35]):

Theorem 1. Let a quality functionΨ (meeting conditions 7) be given. Suppose that
AS1, . . . , ASn are approximation spaces (classifying agents) based on reducts. The
problem of finding an optimal subset of agents (according to the functionΨ) is NP-
hard.

Proof. A similar result (for a problem formulated in a slightly different way) was
presented in [34]. We will show that any minimal binary matrix column covering
problem (known to be NP-hard) can be solved (in polynomial time) by selecting an
optimal subset of agents for a certain data table and a set of classifying agents. Let
B
� �

bi j � be ann �m binary matrix to be covered by a minimal set of columns
(suppose that there is at least one 1 in every row and column).

Let
� � �

U �A�d� be an information system, such that every row of matrixB cor-
responds to a pair of objects fromU and every column ofB corresponds to one
attribute fromA (henceA� n, U � 2m). Let attribute values be defined as fol-
lows:

ai
�
u2 j�1� �2�bi j �

ai
�
u2 j � �2�2bi j �

d
�
u j � � j mod2�

wherej
�

1��m, i
�

1��n. The setU of objects is partitioned into two decision classes
D0 andD1.

Let us define a family ofn approximation spaces based on subtables:
�

i
� �

Ui �A�d�,
i � �

1� ���n�, whereUi
� �

u2 j �U : bi j
�

1�� �
u2 j�1 �U : bi j

�
1�. Let ASi

�
�
Ui �I �Ri �ν� be an approximation space based on subtable

�
i and the subset of at-

tributesBi
� �

ai� (which is a reduct of
�

i ):

I
�
u� � �u�A �

Ri
� ��u�Bi : u �Ui ��

ν
�
X1 �X2� �µ

�
X1�X2��

The setUi contains pairs of objectsu2 j �u2 j�1 which correspond to rowsB covered
by columni. Let ASJ be an approximation space based onJ (6). We will prove that
classification algorithmCAASJ correctly classifies each object fromU iff J corre-
sponds to a column covering ofB. Let uk be an object fromU (suppose, without
loss of generality, thatk is even,k

�
2i). Let RJ

��
j�J R j be a family of templates

of synthesized approximation spaceASJ. Note that for anyR�R j �
u2i �R�R j �

� bi j
�

1;

hence, asJ corresponds to a covering ofB, there exists a templateR that matches
the objectuk. Note that for even numbers of objects,

�u2i �B j

�
D0�
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whereu2i �U j . Hence,

u2i �R�R j
�� ρ

�
R� �0�

Every rule based on the templateR�RJ is deterministic. Therefore, for any voting
functionΦ (that meets condition 8), objectuk will be classified correctly. The same
holds for oddk [in this caseρ

�
R� �1].

Suppose thatJ corresponds to a set of columns which is not a covering ofB. In
this case, there exists a rowi not covered by any of the selected columns, and object
u2i is not contained by anyU j for j � J. Objectu2i does not match any template
from RJ, so it will not be classified correctly.

It was proven that there exists a bijection between ensembles (subsets) of classi-
fying agents (which classifies correctly all objects from

�
) and coverings (subsets

of columns) of matrixB. Note that, by assumption (7), if there are many ensembles
that classify every object inU , a functionΨ will prefer the smaller one. Hence, the
optimal subset of agents corresponds to a minimal covering of B. This completes the
construction of the (polynomial) transformation of the matrix covering problem to
the problem of selecting an optimal subset of agents, which proves the NP-hardness
of the latter. ��

5 Adaptive Strategies of Constructing Classifiers

The KDD process [5] consists of several stages; some of them may be performed au-
tomatically (some preprocessing steps, data reduction, method selection, data min-
ing), whereas the others require expert knowledge (understanding the application
domain, the goals of the analytic process, selecting an appropriate data set, inter-
preting and using results). One of the important fields in KDDresearch is seeking to
develop methods of possibly automating many steps of the KDDprocess by using,
e.g., automatic feature extraction, data reduction, or algorithm selection via param-
eterization. These methods are often based on an adaptationparadigm.

Let us consider an automatic classification system based on the KDD scheme. We
will construct the classification algorithm step-by-step,by optimizing information
granulation used at each level: feature extraction and preprocessing, data reduction
and generalization, and synthesis of the final classifier (see Fig. 4). Some of these
steps are known to be NP-hard, e.g., an optimal decomposition problem [11], opti-
mal reduct finding (in the sense of its length or other measures, and also in cases of
approximate or dynamic reducts [31, 35]), selection of optimal ensembles of agents
(see above and [34, 35]). Approximate adaptive heuristics (e.g., based on evolution-
ary metaheuristics) should be used to optimize these steps.

A practical (partial) implementation of a classification system described in Fig. 4
was presented by the author in [35]. On the lower level, feature extraction evolu-
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Classification algorithm

Classifying agents (approx. spaces)

Preprocessed attributes

Attributes

voting, subset selection

reducts finding

identity, discretization, linearization, clustering etc.

Fig. 4. Hierarchical construction of a classifying algorithm fromgranules (descriptors, ap-
proximation spaces); small circles with arrows denote adaptable parameters of information
granules (or transforming/combining them)

tionary algorithms are used to create optimal linearization of attributes or new fea-
tures based on a relational database (see Sect. 3). The process may be regarded as an
optimization of weights in cases of linearization or as a selection (by 0–1 weights)
of the best new attribute from the inductive closure of the database. There are other
potential spaces of structures of new attributes, based on both a supervised and an
unsupervised learning method. These spaces include clustering, PCA, discretiza-
tion, and feature extraction methods used in cases of complex input objects (time
series analyses, pattern recognition, etc.), which match the general scheme (Fig. 4).

The rough set based rule induction system is used at the generalization stage of an
algorithm. A group of adaptation-based evolutionary (hybrid) algorithms for reduct
finding creates a complete approximation space (by providing a set of rules as a
source of templates forming theR family) parameterized by approximation coef-
ficients in cases of approximate reducts [30]. The reduct finding process can be
regarded as an optimization of 0–1 coefficients used in combining elementary gra-
nules (based on single attributes) into more complex ones (described by the approx-
imation space).

The next step in the hierarchy depicted in Fig. 4 is concernedwith creating opti-
mal ensembles of classifying agents. The problem is NP-hard(see Theorem 1); the
results of practical experiments confirm that increasing the number of agents in an
ensemble does not necessarily lead to enhancing the classification results (see Fig.
5 and [34]). In [35], a genetic algorithm is used to find an optimal subset of agents.
Chromosomes (binary coding) represent subsets of agents, and the fitness function
is calculated based on classification results of an additional testing subtable.
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Fig. 5. Classification results (vertical axis) and number of agentsin an ensemble (horizontal
axis) –DNAsplices andprimary tumor data sets

There are two main conditions for regarding an algorithm as adaptive [1]: first, the
algorithm should be parameterized (able to change itself);second, the criterion of
parameter optimization should be based on the algorithm’s efficiency. In the case
of the adaptive scheme presented in Fig. 4, every level of thehierarchical granule
combination process is parameterized either by weights (adjusting the method of
combining granules) or by granule parameters. The optimization process for these
parameters (e.g., the fitness function for genetic algorithms) at each level is based
on an approximation (estimation) of the final classifier performance. In some cases,
the estimate is based on results from an additional test sample (e.g., in optimization
of an ensemble of agents [34]); at other levels, one should use more indirect approx-
imation. In the adaptive system described in [35], both new features (e.g., given by
linearization) and reducts are optimized by a probabilistic-based quality measure (a
predictive measure [33]) estimating the final classifier quality indirectly. The popu-
lar criteria of the classifier optimization, based on the minimum description length
principle [7], lead to an even more indirect approximation.

One may notice an interesting analogy between Fig. 4 and neural networks [13],
[18]. In a multilayer feedforward artificial neural net, a model of input–output de-
pendency is built as a combination of a number of linear (parameterized) and non-
linear functions. The adaptation process (implemented, e.g., as a back-propagation
algorithm) is based on adjusting parameters (weights) based on the model prediction
error, propagated down the net. There is no direct way to adapt this scheme to the
general case of adaptive rule-based classifiers since thereare no general methods of
error propagation known in the discrete case (although someheuristics are used in
this case). The most universal (but time-consuming) adaptation scheme is to collect
new cases together with the correct answers and to rebuild the whole classification
system or just a part of it (e.g., a new ensemble of agents) using the new data.

6 Results and Conclusions

This chapter describes a general scheme of modeling a process of classification
system construction using the notion of an information granule. The process starts
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with a set of elementary information granules based on single attributes. The first
level of the adaptive process of classifier construction is preprocessing of the ini-
tial attributes: discretization (generalizing several information granules into one),
linearization (combining several attributes using an optimal, in some sense, linear
combination of them where the final information granule is a combination of a set
of granules based on a set of attributes), and other techniques. The next level of the
hierarchical process is to combine information granules derived from the original at-
tributes into approximation spaces (collections of information granules of a higher
order). Rough set theory is a tool for generalizing descriptors (granules based on
single attributes) onto the sets of rules.

The last level of the process described in the chapter is to combine a set of in-
formation granules (sets of rules, classifying agents) into one classification system
and to resolve conflicts between them. The problem of selecting an optimal subset
of agents is proven to be NP-hard, and a genetic algorithm is proposed to solve it
approximately.

Since many of the problems concerning constructing and combining information
granules are proven to be NP-hard, approximate heuristics should be used to obtain
good results. The adaptive paradigm is the base of algorithms described in the chap-
ter. All the steps of granule combination are parameterized, and some algorithms
for parameter optimization are presented. Quality measures based on (estimated)
efficiency of classifying new cases are proposed.

Table 1.Experimental results compared with two popular classifiers. The result column con-
tains a number (percent) of properly classified test objects

DataSize (training table)k-NN C4.5Result

Sat image 4435�37 90.6 85.0 91.05

Letter 15000�17 95.6 88.5 96.00

Diabetes 768�9 67.6 73.0 73.30

Breast cancer 286�10 73.1 71.0 72.84

Primary tumor 339�18 42.2 40.0 39.43

Australian 690�15 81.9 84.5 86.34

Vehicle 846�19 72.5 75.2 68.61

DNAsplices 2000�181 85.4 92.4 95.29

Pendigits 7494�16 97.8 98.28

The adaptive classification system described above was partially implemented by
the author [29, 34, 35]. The results of experiments on some benchmark data tables
are presented in Table 1.

Further research is needed in many detailed aspects of the process described. Re-
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gular examination of adaptive strategies of parameter optimization (especially when
generalizing parameters, not only weights) should be performed. Although many
parts of the process have been successfully implemented by the author, there are
still no experimental results for the whole, fully adaptivealgorithm. An integration
of some methods described in the paper with RSES (rough set based data analysis
system [19]) is to be done in the near future.

Acknowledgments

This work was supported by a grant of the Polish National Committee for Scientific
Research (KBN), No. 8T11C02519.

References
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