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Summary. This chapter addresses issues concerning a problem ofectirs§ an optimal
classification algorithm. The notion of a parameterized@ximation space is used to model
the process of classifier construction. The process careledi as hierarchical searching for
optimal information granulation to fit a concept describgepirical data. The problem of
combining several parameterized information granulese(gby classification algorithms) to
obtain a global data description is described. Some salsifimsed on adaptive methods are
presented.

1 Introduction

Many practical, complex problems cannot be solved effityef®.g., because of
computational limitations) without decomposing them iessier subproblems. The
hierarchical approach to problem solving is widely knowd aised, as in the case
of a control problemléyered learning[32]) or decomposition of large databases
in knowledge discovery in databases (KDD) [10]. Granulanpating [12, 24, 36]
(a new paradigm in computer science based on the notion @firation granula-
tion), when employed as machine learning, machine peaeptind a KDD tool,
also uses the advantages of a hierarchical structure.

This chapter addresses issues concerning the problem efraoting an optimal
classification algorithm in KDD applications. Suppose tteth is stored withile-
cision tableq414], where each training case (elementary informatiomgie) drops
into one of predefined decision classes. By assumptionyalladble information
about the universe of objects (cases) is collected in thisidectable (orinforma-
tion systemA = (U,A,d), where each attribute € A is identified with a function

a: U — V, from the universe of objectd in the setV, of all possible values cd
and valueyy € Vy of d ¢ A (a distinguished decision attribute) correspond to mutu-
ally disjoint decision classes of objects. We will denotesth classes WY1, . .., D,
whereD; C U.

The aim of data analysis is to construct an understandalsleriggon of data or
a classifier (an algorithm that can classify previously ensebjects as members of
appropriate decision classes). Methods of constructirdgskifiers or descriptions
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can be regarded as tools for data generalization, i.es thal construct more and
more general descriptions in terms of a hierarchy of infaiomegranules. Classi-
fiers based on the rough set theory [14—17] are consider&ikictiapter.

The main notion of the rough set theory is timeliscernibility relation Any two
objectsus, up € U are indiscernible by a set of attributes A [which is denoted by
(u1,up) € IND(B)] iff there is no attributeéb € B such thab(u;) # b(uz). An indis-
cernibility class of objecti € U is the set of objects (denoted [agg) indiscernible
with u:

[us={U €U : Vpegb(u) =b(U)}.
A decision reduct BC A is the minimal (in terms of inclusion) set of attributes that
is sufficient to discern any pair of objects from differentidgén classes, supposing
that the whole set of attributes discerns the pfD(B) C IND({d}) UIND(A).
Let us define the following rough set based notions:

Definition 1. Let indiscernibility relationND(B) be given.The upper approxima-
tion of a setX is defined as

X={ueU: XNJug # 0}.
The lower approximatioof a setX is defined by
X={ueU: [ugCX}.
Definition 2. The rough inclusiomf setY in X is defined by

mnmz{%%“fY¢®

1 otherwise.

The rough membershipf objectx in setX based on a set of attribut@ds defined
by
B XN [l
B (x) = S
|[Xg]

Indiscernibility classes are related to different levdlséormation granulation. El-
ementary granules correspondtify classes (based on the whole set of attributes);
everyB C A corresponds to a higher level granule, which may be used aseafbr
decision rule:

ar(u) =viA...Agj(u) =v; = d(u) = vg, 1)
forB={ay,...,aj}.
A notion of approximation spacea theoretical tool for data description with infor-
mation granules is presented in the next sections of thistehaA general compo-

sition scheme of data models (regarded as approximatiarespanto one classifier
is presented as well.

The reader can find more details on the important role of appration spaces
in the process of information granule construction in Clgap.
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2 Classification Algorithms

2.1 Approximation Spaces

The notion of anapproximation spacésee, e.g., [4, 15, 21-23, 25-27]) may be
regarded as an extension of rough set theory. It is a tooldsciibing concepts not
only in terms of their approximations but also in terms of sirailarity of objects
and concepts (see e.g., [15, 23, 25]). The notion of appratkim space defined
below is an extended form of definitions known from the litara (for more infor-
mation see also Chap. 3 and [20]).

Definition 3. An approximation space a tupleAS= (U,1, R ,v), where

e U is a set of objects.

el :U — 2P(U) is a function mapping every object frochinto a subset (called a
neighborhoodl, whereVycy u € I (u).

e R C P(U) is a family of subsets dfl (interpreted as aet of templateor infor-
mation granules, which are used to describe a concept).

ev:P(U)x P(U) — [0,1] is a function (interpreted as thegree of inclusiomf
subsets o)), where (see [23, 26])

1. \V/AQU V(A,A) =1
2. VAQU V(@,A) =1.
3. Yagccu v(A,B) =1= v(C,B) > Vv(C,A).

An approximation space determines a language of descrdgingepts irlJ. It is
useful especially in cases of vague, inaccurate, and intimgescriptions of data.
Functionl expresses the idea of the indiscernibility of objects (altexf incom-
pleteness of object descriptions), whereas farilgetermines a way of generaliz-
ing information about objects (which allows us to deal withidcurate and vague
data).® may be defined, e.qg., by using languags formulas based on descriptors
a(u) = vas atomic formulas (faa € A, v € V) and operationA”. In this case [27],

R ={rq : a €L}, (2)
wherery C U corresponds to the semantics of formala setU.

A goal of the KDD process in both a descriptive and predicsiease is to provide
the best approximation of (one or more) concBpt U based on known data by
optimal information granulation. For a prediction taske #pproximation takes the
form of aclassification algorithm— a function mapping vectors of values of con-
ditional attributes into the set of decision clas¢€s,...,Dx}. Selected decision
classD; C U is described byASas a rough set with upper and lower approximations

given by
5= U R b= U R
ReR : RND;£0 ReR : RCD;
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Definition 4. Let A; = (U1,A,d) be a decision table (training data set) ak8=
(U,1,R,v) be an approximation space, wh&reC U. LetD C 2(U) be a partition
of U onto disjoint decision class&= {Dj,...,Dg}, and let functions

p:R—{0,12,...,k}
wherek = |D| and
®:({0,1,...,k} x[0,1])" — {0,1,...,k}
be given.The classification algorithrhased orASandp, @ is a mapping
CAaspp.o :U — {0,D1,D>,...,Dy}

defined as

CAasp,po(U) = @{p(Ry),V[I(U),Ri],....p(Ra),V[I(u),Ra]}, ®3)
wheren = |R|. (We will omit subscriptsAS D, p, ® for simplicity).

Typically, a given test objeatis matched against templates from the fanf{l\e.g.,
the left—hand sides of decision rules), and the best mai¢h R _is selected. Then
the most frequent decision classRns taken as a result of the classificatioruofn
most caseq is defined as

i f = s Ui
o(R) = {grgmale..k[v(R,D )] OotLerrnv;ze.l,,k[v(R Di)] >0 @

If an object can be matched to more than one temitatiee final answer is selected
by voting:

argmax. ienviei Xj) 0f 3% >0
O30, ()] = { o O KB

forn=|R|, i.e., given a set of partial answersand corresponding coefficients
one should select the most popular answer (in terms of theasug). The coeffi-
cients may be regarded as support of decision, credibilitgpnviction factor, etc.
For formula 3, it is the coefficient of relevancy of templ&g i.e., the degree of
inclusion of the test object iR;.

Given templateR may belong to the upper approximation of more than one de-
cision class. The conflict is resolved by functipnAlternatively, the definition of
the classification algorithm may be extended onto sets dbidecclasses or even
onto probability distributions over them:

CA:U — AX,

whereA* denotes thé-dimensional simplexAk = {x € [0,1]K : Tk ;x =1}. In
more general cases, the classification algorithm may tdakeatcount the degree of
inclusion of an objecti in the templateR as well as the inclusion dR in decision
classes.
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2.2 Parameterized Approximation Spaces

The notion of gparameterized approximation spae@s introduced [18, 35] to pro-
vide more flexible, data-dependent description languaghetetU. By AS, we

will denotet an approximation space parameterized with a parametesngeet=.

The problem of optimal classifier construction is regardedmoptimization prob-
lem of finding optimak € =, i.e., of finding a vector of parameters such
generates an optimal (in the sense of, e.g., cross-validegisults) classification al-
gorithm. Parametef is often used to maintain a balance between the generality of
a model (classifier) and its accuracy.

Example 1 An approximation space based on the set of attribut€sBof infor-
mation system = (U, A, d) (see [26]). Let

1. 1(u) = [u]a,
2.R ={[us:ueU},
3. V(Xl,XZ) = p‘(xlixz)

b

for Xy, X2 CU, where pis a rough inclusion function (Def. 2). ThernsA&J, 1, R ,v)

is an approximation space related to a partition of the setrtbiindiscernibility
classes of the relation INQXB). If we assume that B is a decision reduct of consis-
tent data tableA, then family® corresponds to a set of consistent decision rules
(i.e., for all Re R, there is a decision class;Buch that RC D;). Every template

R e R corresponds to a decision rule r of the form of the conjurctiba (u) = v;
descriptors, wherejae B, vj € V.

Now, let AS o, where BC A anda € [0, 1], be a parameterized approximation space
defined as follows (see [37, 39)):

1.1(U) = [ula,
2. R ={us:ueU},

_ p‘(xlixz) if IJ.(X]_,XZ) >a
3. (X, Xg) = { 0 otherwise.

A classification algorithm based on Agworks as follows: for any test objectau
U, find a template R matching it (i.e., a class of training atgddentical to u with
respect to attributes B), then check which is the most freggeecision class in a set
R. If the most frequent decision classddvers at leastt of R [i.e., (R, Di) > a],
object u is classified as a member of[De., p(R) = i]. Otherwise, it is unclassified.

The goal of the above rough set based adaptive classificakipomithm is to find
such parameter®,a) that the approximation spaées o generates the best clas-
sifier. One can see that with parameBekve adjust the generality of the model (the

1 The notion of a parameterized approximation space is regartthe literature AbSy =
(U,lIg,v4). The notation used in this chapter is an extension of theicialscase.



144 J. Wroblewski

smallerB is, the more general set of rules is generated, but also $isealecurate
rules we obtain). On the other hand, parameteadjusts the degree of credibil-
ity of the model obtained: foo = 1, there may be many unclassified objects, but
only credible rules are taken into account; for snealthere may be no unclassified
objects, but more objects are misclassified.

Example 2 Let p be a metric on a set of objects U divided into disjoint decisio
classes D= {Dg,...,Dm}. For each ue U and for test data set ) let o, be a
permutation of 1,..,|U4| }, such that

1<i<j<|Uif & p(u,Ug, i) < P(U,Ug, ()
for uou.p(i)7 uOu.p(j) € Ul'

LetkNN, : U x N — 2Y1 be a function mapping each object u to a set of its k nearest
neighbors according to metrig:

kNl\b(U, k) = {Uou(l), - Ucu(k)} .

Let I p(u) = KNNy(u,k) for a given k; let® = {RCU : |R| =k} andv(X1, X2) =
M(X1,X2) (cf. Definition 2). Assume thatand ® are defined by (4) and (5). Then
AS= (U, Iy, R,v) is an approximation space, and &ép o o is a classification al-
gorithmidentical to the classical k-nearest neighborsaithm. For each test object
u, we check its distance (given by me)do all training objects from Y. Then we
find the k nearest neighbors [sgi(u)] and define template R Iy (u). Object u is
then classified into the most frequent decision class in R.

Let n=|A| and we R™. Letpy be the following metric:

Pw(U,U2) = iwi |ai(u1) —aj(u2)

The approximation space defined above may be regarded asitampterized ap-
proximation space A§ = (U, lkp,,&,V), based on the k nearest neighbors and
metricpw. It is known that the proper selection of parameters (mgtsicrucial for
k-NN algorithm efficiency [2]).

3 Modeling Classifiers as Approximation Spaces

The efficiency of a classifier based on a given approximatgacte depends not
only on domain-dependent information provided by valueattofbutes but also on
its granularity, i.e., level of data generalization. Pnogranularity of attribute values
depends on the knowledge representation (data descriptignage) and the gener-
alization techniques used in the classification algorittincases of data description
by an approximation spag&S= (U,I,R,v), the generalization is expressed by a
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family R of basic templates (granules) that form a final data model.

Some classification methods, especially these based csiateniles of the form (1),
act better on discrete domains of attributes. Real-valaatiifes are often transfor-
med by discretization, hyperplanes, clustering, prinicjmenponent analysis, etc.
[6, 9, 11]. One can treat the analysis process on transfodaeceither as modeling
of a new data table (extended by new attributes given as agifunaf original ones)
or, equivalently, as an extension of model language. Therlateans, e.g., change
of metric definition in thek-NN algorithm (Example 2) or extension of descriptor
language by interval descriptora(ll) € [ci,ci+1)” in a rule based system.

An example of a new attribute construction method was pteseby the author

in [29]. A subset of attributeB = by, ...,by C A is selected; then an optimal (in
the sense of some quality measure) linear combination af teeonstructed by an

evolutionary strategy algorithm:

h(u) = a1by(u) + ... + ambm(u),

whered = (ay,...,am) € R™ is a vector of coefficients (assurfi@l || = 1). Note
that every linear combination corresponds to one vector of sine= |A|. An ap-
proximation space is based on a set of attributes contaimingw one that is a
discretization oh (see Fig. 1). If the process of constructing a classificagimstem
involves extension of\ with k new attributes based on linear combinations, one
may regard the process as optimization of an approximapeneAS z:  pa-

rameterized by a set of parametérsee Example 1) and a set of vectiﬁs. e on(
representing linear combinations of attributes.

A

b,

o

Fig. 1. A linear combination of two attributes and its discretipati

The more general approach is presented in [35]. A model baisé¢ke notion of a
relational information system [33], originally designed felational database analy-
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Final (synthesized) granule

(@ @i@ ©) @
A

Parameters of input granules

Fig. 2. Two general methods of adaptive combining granul@sby weights(b) by adjusting
model parameters on the lower level of a synthesis tree

sis, can be easily extended to cover virtually all possitaiegformations of existing
data. The inductive closurs® of an information system (or a relational information
system)A is a decision table closed by an operation of adding (inedent) new
attributes based on a given family of operations. Such aioto§s* is always finite
since there is only a finite number of inequivalent attrisudeany decision tablé.
Hence, any classifying system based on transformed atsbuay be modeled by
a parameterized approximation spa#® g, whereg is a set of parameters (influ-
encing, e.g., a generalization level of rules) @&d A* is a subset of attributes of
inductive closure of.

When a final set of attributes (original, transformed, oated based on, e.g., rela-
tions and tables in relational database) is fixed, the neag@bf classifier construc-
tion begins: data reduction and the model creation protessugh set based data
analysis, both steps are done by calculating reducts (exagiproximate) [28, 31,
35, 37] and a set of rules based on them. Unfortunately, afseles based on a
reduct is not general enough to provide good classificatignlts. A combination
of rule sets (classifiers), each of them based on a diffeezhtat, different trans-
formations of attributes, and even on different subsetsaifiing objects, must be
performed.

4 Combining Approximation Spaces

One may distinguish between two main adaptive methods afudgacombination
(see Fig. 2). The first denoted (a) is based on a vector of wgighal numbers)
used in a combination algorithm to adjust, somehow, theénite of a granule on
a final model. In this case, granules (given by classificagilgorithms) are fixed,
and the best vector of weights is used just to “mix” them ($eertext section for
more details). The second method denoted (b) consists nfiaingparameters of in-
put granules, e.g., their generality, for a fixed combinirejimod. In this section, we
will consider one of the simplest adaptive combining methbg zero—one weights,
which is equivalent to choosing a subset of classifiers antbiming them in a fixed
way. We will refer to this subset as an ensemble of clasgifgigents (algorithms
represented by an approximation space).
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R,

Combination of approximation spaces

Testing
object

[
L

I/ 1T 11 /(
R2 % Result:
voting of matching templates

Fig. 3. A combination of approximation spaces (algorithms) andva olgiect classification

Assume that a classification syst&W is composed ok classifying agents, each

of them based on its own parameterized approximation sp&ge..,AS and on

its own subset of training examplék;, ..., Uy [using the samé(u) andv func-
tions, limited toU;]. Let us define an approximation space as a combination of
AS,...,AS.

Definition 5. Operation of synthesisf approximation spacesS, ..., A%, where
AS = (U, l;, R, vi) andl; = Iy, Vi = V|y;, is @ mapping(AS,...,AK) = AS,
whereAS = (U,l, % ,v) and

U =Uiz1.kUi;
R =Uiz1k K-

The classification of a new objeatusing AS consists of finding all appropriate
templatesR [i.e., R such thaw[l (u),R] is large enough, see Definitions 3 and 4].
Then all values op(R) are collected, and the final answer is calculated by voting
(function®).

Supposing that subsdtk are significantly less thald, one can see that templates
(in terms of subsets of objects match&l) € &, are relatively small as well. In
practice, one should use a method of generalizing theselagesponto the whole
universeJ.

If, for example, a familyg; is defined by a redu@ C A (see Example 1)
R ={[us : ue Ui},
then it will be generalized onto

K ={[uls : ueU},



148 J. Wroblewski

and a definition of synthesize®{AS;,...,AX) = AS contains the following fami-
ly R:

®= &

i=1.k

In [35], some remarks concerning connections between theeabperations and
rough mereology [16] are presented. A classification sysiased on a family of
approximation spaces may be regarded as a multiagent sysithnone special
agent for result synthesis. When classifying a new ohjetite synthesizing agent
sends a request for delivery of partial descriptions (tet@siR) of the object to
subordinate agents. Then a complete description is syimttesased on Definition
5.

Note that a set of classifying agents may work on separatsessilly, . ..,U, of
setU (e.g., in a distributed data mining system). Suppose that afsapproxima-
tion spaced\S, ...,AS, was created based on reducts (see Example 1). £9dh
composed of a set of decision reducts, each of them relatedgdemplat®R € R
(Ris a set of objects matching the left-hand side of the ruld)aadecision value
d = p(R). We tend to obtain the optimal synthesisA®, ...,AS,, based on a mea-
sureW of classification algorithm quality.

LetS(AS,...,AS,) = AS, whereAS = (U, I, R,v). Suppose that

U= Ui:]...nUia
R =Ui=1.n R0

for AS = (U;,1,%&;,v). The spacéAS is composed of all agents (approximation
spaces) from the familgS,, . .. ,AS,; our goalis to choose a subget {j1,..., jjj}
that corresponds to the synthesized approximation space,

AS = S(AS,....,AS;,), (6)

providing optimal classification algorith@Aag,. Let Pos;(CA) andNeg; (CA) de-
note a number of testing objects from taBlproperly and improperly (respectively)
classified byCA. Let W be a quality measure based on classification results, on
satisfying the following conditions:

Pogz(CA1) C Pog3(CAz) A Negz(CA1) = Negg(CAx) = W(CA) < W(CAy),
Pog;(CA;) = Posz(CAp) A Negs(CA1) = Negs(CA2) =
= (W(CA) < W(CA) <= || > [ %), -
whereCA; = CAAle, CA = CAASJZ, andJ;, J, are subsets of agents. The above
conditions mean that if two subsets of agents achieve the sasnlts on a test table
B, we would prefer the smaller one.

Assume thaCAnsg, is based on a voting functiof, such that

Vivi=vWwyvi=0)A(Fvi=Vv) = P[(v1,1),..., (W D] =V (8)
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The following fact is true for families of classifying ager{see [35]):

Theorem 1. Let a quality functiot! (meeting conditions 7) be given. Suppose that
AS, ..., AS are approximation spaces (classifying agents) based onatsd The
problem of finding an optimal subset of agents (accordingpéoftinction) is NP-
hard.

Proof. A similar result (for a problem formulated in a slightly difent way) was
presented in [34]. We will show that any minimal binary matblumn covering
problem (known to be NP-hard) can be solved (in polynomiaé&)i by selecting an
optimal subset of agents for a certain data table and a sésfifying agents. Let

B = {bjj} be ann x m binary matrix to be covered by a minimal set of columns
(suppose that there is at least one 1 in every row and column).

Let A = (U,A d) be an information system, such that every row of ma®igor-
responds to a pair of objects froth and every column oB corresponds to one
attribute fromA (hence|A| = n, |U| = 2m). Let attribute values be defined as fol-
lows:

ai(Wj—1) = 2—byj,
a;(uzj) = 2—2bij,
d(uj) = jmod2,

wherej = 1..m,i = 1..n. The set of objects is partitioned into two decision classes
Do andD;.

Let us define a family ofi approximation spaces based on subtalfies: (U;, A,d),

i € {1,..,n}, whereU; = {Uzj eVU: bij = 1}U{U2j_1 eVU: bij = 1}. LetAS =
(Ui,1,R,v) be an approximation space based on subtabplend the subset of at-
tributesB; = {&} (which is a reduct ofy;):

1(u) = [ula,
R ={[ulg : ue U},
\)(Xl,Xz) = |J.(X;|_, X2).

The selU; contains pairs of objecig;j, uyj—1 which correspond to row covered
by columni. Let AS be an approximation space basedlqe). We will prove that
classification algorithnCAas, correctly classifies each object frachiff J corre-
sponds to a column covering & Let ux be an object fronJ (suppose, without
loss of generality, that is evenk = 2i). Let X; = Uj¢; K; be a family of templates
of synthesized approximation spa&g. Note that for amR € &;,

Wi € RER) <= bjj=1;

hence, agd corresponds to a covering 8f, there exists a templaf that matches
the objectux. Note that for even numbers of objects,

[UZi]Bj = D07
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whereuy; € Uj. Hence,
Uy € Re R} = p(R) =0.

Every rule based on the templd&ec R; is deterministic. Therefore, for any voting
function® (that meets condition 8), objeat will be classified correctly. The same
holds for oddk [in this casep(R) = 1].

Suppose thal corresponds to a set of columns which is not a covering.oin

this case, there exists a réwot covered by any of the selected columns, and object
Uy is not contained by any; for j € J. Objectuy does not match any template
from &3, so it will not be classified correctly.

It was proven that there exists a bijection between ensesr{bléhsets) of classi-
fying agents (which classifies correctly all objects fréanand coverings (subsets
of columns) of matriXB. Note that, by assumption (7), if there are many ensembles
that classify every object id, a function¥ will prefer the smaller one. Hence, the
optimal subset of agents corresponds to a minimal covefiBg ©his completes the
construction of the (polynomial) transformation of the matovering problem to

the problem of selecting an optimal subset of agents, whichgs the NP-hardness

of the latter. O

5 Adaptive Strategies of Constructing Classifiers

The KDD process [5] consists of several stages; some of thayrbaperformed au-
tomatically (some preprocessing steps, data reductiothodeselection, data min-
ing), whereas the others require expert knowledge (uratgisig the application
domain, the goals of the analytic process, selecting anogpipte data set, inter-
preting and using results). One of the important fields in KieBearch is seeking to
develop methods of possibly automating many steps of the iKRRess by using,
e.g., automatic feature extraction, data reduction, asritlygm selection via param-
eterization. These methods are often based on an adapatiadigm.

Let us consider an automatic classification system basedeoKDD scheme. We
will construct the classification algorithm step-by-stbp,optimizing information
granulation used at each level: feature extraction andrpeegsing, data reduction
and generalization, and synthesis of the final classifie¥ [4g. 4). Some of these
steps are known to be NP-hard, e.g., an optimal decompogitimblem [11], opti-
mal reduct finding (in the sense of its length or other measamed also in cases of
approximate or dynamic reducts [31, 35]), selection ofroptiensembles of agents
(see above and [34, 35]). Approximate adaptive heuristigs (based on evolution-
ary metaheuristics) should be used to optimize these steps.

A practical (partial) implementation of a classificatiors®m described in Fig. 4
was presented by the author in [35]. On the lower level, featixtraction evolu-
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Classification algorithm
% voting, subset selection

i 1 \ reducts finding
Preprocessed attributes
m Tidentity, discretization, linearization, clustering etc.
o o  Attributes

Fig. 4. Hierarchical construction of a classifying algorithm frayranules (descriptors, ap-
proximation spaces); small circles with arrows denote taddp parameters of information
granules (or transforming/combining them)

lassifying agents (approx. spaces)

tionary algorithms are used to create optimal linearizatibattributes or new fea-
tures based on a relational database (see Sect. 3). Thesproeg be regarded as an
optimization of weights in cases of linearization or as &s@bn (by 0—1 weights)
of the best new attribute from the inductive closure of theabase. There are other
potential spaces of structures of new attributes, basedtimebsupervised and an
unsupervised learning method. These spaces include thgst®CA, discretiza-
tion, and feature extraction methods used in cases of conmgbeit objects (time
series analyses, pattern recognition, etc.), which mékelgéneral scheme (Fig. 4).

The rough set based rule induction system is used at the ajera¢ion stage of an
algorithm. A group of adaptation-based evolutionary (Igbalgorithms for reduct
finding creates a complete approximation space (by progidiset of rules as a
source of templates forming thR family) parameterized by approximation coef-
ficients in cases of approximate reducts [30]. The reducirfqngirocess can be
regarded as an optimization of 0—1 coefficients used in coimdpielementary gra-
nules (based on single attributes) into more complex oresscfibed by the approx-
imation space).

The next step in the hierarchy depicted in Fig. 4 is concemi¢itl creating opti-
mal ensembles of classifying agents. The problem is NP-{s&@ Theorem 1); the
results of practical experiments confirm that increasirgrthmber of agents in an
ensemble does not necessarily lead to enhancing the dasisifi results (see Fig.
5 and [34]). In [35], a genetic algorithm is used to find an mgaii subset of agents.
Chromosomes (binary coding) represent subsets of agentsha fitness function
is calculated based on classification results of an additi@sting subtable.
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Fig. 5. Classification results (vertical axis) and number of agantm ensemble (horizontal
axis) —DNAsplices andprimary _tumor data sets

There are two main conditions for regarding an algorithmdegpéve [1]: first, the
algorithm should be parameterized (able to change itssf)ond, the criterion of
parameter optimization should be based on the algorithffigency. In the case
of the adaptive scheme presented in Fig. 4, every level ohi&rchical granule
combination process is parameterized either by weightsigtidg the method of
combining granules) or by granule parameters. The optimizgrocess for these
parameters (e.g., the fitness function for genetic algmsjhat each level is based
on an approximation (estimation) of the final classifier perfance. In some cases,
the estimate is based on results from an additional testlegeyg., in optimization
of an ensemble of agents [34]); at other levels, one sho@dngse indirect approx-
imation. In the adaptive system described in [35], both nestudres (e.g., given by
linearization) and reducts are optimized by a probahidlibased quality measure (a
predictive measure [33]) estimating the final classifierigpandirectly. The popu-
lar criteria of the classifier optimization, based on theimimm description length
principle [7], lead to an even more indirect approximation.

One may notice an interesting analogy between Fig. 4 andahaatworks [13],
[18]. In a multilayer feedforward artificial neural net, a dab of input—output de-
pendency is built as a combination of a number of linear (patarized) and non-
linear functions. The adaptation process (implemented, & a back-propagation
algorithm) is based on adjusting parameters (weights)bas¢he model prediction
error, propagated down the net. There is no direct way totatisgpsscheme to the
general case of adaptive rule-based classifiers sincedher® general methods of
error propagation known in the discrete case (although dweueistics are used in
this case). The most universal (but time-consuming) adiaptacheme is to collect
new cases together with the correct answers and to reb@ldliiole classification
system or just a part of it (e.g., a new ensemble of agentsyjike new data.

6 Results and Conclusions

This chapter describes a general scheme of modeling a pradedassification
system construction using the notion of an information gkanThe process starts
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with a set of elementary information granules based on siagtibutes. The first
level of the adaptive process of classifier constructiorréppcessing of the ini-
tial attributes: discretization (generalizing severdbimation granules into one),
linearization (combining several attributes using anrmptj in some sense, linear
combination of them where the final information granule isoebination of a set
of granules based on a set of attributes), and other techsidine next level of the
hierarchical process is to combine information granuleivdd from the original at-
tributes into approximation spaces (collections of infatimn granules of a higher
order). Rough set theory is a tool for generalizing desargp{granules based on
single attributes) onto the sets of rules.

The last level of the process described in the chapter is mobate a set of in-

formation granules (sets of rules, classifying agents) arte classification system
and to resolve conflicts between them. The problem of selgetn optimal subset
of agents is proven to be NP-hard, and a genetic algorithmoisgsed to solve it

approximately.

Since many of the problems concerning constructing and aunpinformation
granules are proven to be NP-hard, approximate heuristmsld be used to obtain
good results. The adaptive paradigm is the base of algaosittencribed in the chap-
ter. All the steps of granule combination are parameteriaad some algorithms
for parameter optimization are presented. Quality measbased on (estimated)
efficiency of classifying new cases are proposed.

Table 1. Experimental results compared with two popular classifieng result column con-
tains a number (percent) of properly classified test objects

DataSize (training tablek-NN C4.5Resul

Sat _image 4435x% 37 90.6 85.091.05
Letter 15000% 17 95.6 88.596.00
Diabetes 768x 9 67.6 73.073.30
Breast _cancer 286x 10 73.1 71.072.84
Primary _tumor 339x 18 42.2 40.039.43
Australian 690x 15 81.9 84.586.34
Vehicle 846x 19 72.5 75.268.61
DNAsplices 2000x 181 85.4 92.495.29
Pendigits 7494x 16 97.8 98.28

The adaptive classification system described above wamlpaiimplemented by
the author [29, 34, 35]. The results of experiments on sometoaark data tables
are presented in Table 1.

Further research is needed in many detailed aspects of toegw described. Re-
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gular examination of adaptive strategies of parametenopdition (especially when
generalizing parameters, not only weights) should be pmdd. Although many
parts of the process have been successfully implementedebgithor, there are
still no experimental results for the whole, fully adaptalgorithm. An integration
of some methods described in the paper with RSES (rough setllifata analysis
system [19]) is to be done in the near future.
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