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Summary. This chapter presents a new paradigm for neurocomputirtghisits roots in
rough set theory. Historically, this paradigm has threemtiaieads: production of a training
set description, calculus of granules, and interval amalyis paradigm gains its inspiration
from the work of Pawlak on rough set philosophy as a basis fachime learning and from
work on data mining and pattern recognition by Swiniarski athers in the early 1990s. The
focus of this work is on the production of a training set dggimn and inductive learning us-
ing knowledge reduction algorithms. This first thread inglouineurocomputing has a strong
presence in current neurocomputing research. The seceosaldtin rough-neurocomputing
has two main components: information granule construdtiatistributed systems of agents
and local parameterized approximation spaces (see Sean@ Chap. 3). A formal treatment
of the hierarchy of relations of being a part to a degree (Rtsmwvn as approximateough
mereology was introduced by Polkowski and Skowron in the mid- and-1880s. Approx-
imate rough mereology provides a basis for an agent-baskegbtige calculus of granules.
This calculus serves as a guide in designing rough-neurpgting systems. A number of
touchstones of rough-neurocomputing have emerged froamteffo establish the founda-
tions for granular computing: cooperating agent, grangilanule measures (e.g., inclusion,
closeness), and approximation space parameter calibrati@ notion of a cooperating agent
in a distributed system of agents provides a model for a mednformation granulation and
granule approximation define two principal activities ofeuron. Included in the toolbox
of an agent (neuron) are measures of granule inclusion asgméss of granules. Agents
(neurons) acquire knowledge by granulating (fusing) angtr@pmating sensor inputs and
input (granules) from other agents. The second componetiteofiranular form of rough-
neurocomputing is a new approach to training agents (nsiuromthis new paradigm, train-
ing a network of agents (neurons) is defined by algorithmadijusting parameters in the pa-
rameter space of each agent. Parameters accessible tormeugins replace the usual scalar
weights on (strengths-of-) connections between neuroaacél learning in a rough neural
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network is defined relative to local parameter adjustmdntsum, the granule construction
paradigm provides a model for approximate reasoning bysysbf communicating agents.
The third thread in rough-neurocomputing stems from theochiction of a rough set ap-

proach to interval analysis by Banerjee, Lingras, Mitraj Bal in the later part of the 1990s.
This work has led to a variety of new rough-neurocomputinmgotational models. This

chapter gives a brief presentation of an agent (neurorgebaalculus of granules. The de-
sign of different kinds of rough neurons is considered. Aegtiures of a number of different
rough-neurocomputing schemes are also considered.

1 Introduction

The hint that rough set theory provides a good basis for reanoputing can be
found in a discussion about machine learning by Zdzislawi&aim 1991 [26]. In-
ductive learning is divided into two phases that are remams of training in classi-
cal neural computing: closed-world training and open-dinaining. Closed-world
training focuses on constructing a péiy,Uo), whereRy is an initial set of classi-
fication rules andlg is an initial set of classified objects (initial universegrieach
objectx € Up, an agent is able to classikbased on identified features of the object
(e.g., color, shape, weight, velocity). The aim of openlddraining is to achieve
complete knowledge of the universe by constructiRg U¢), whereR; is created
either as an initial set of classification rules or by modifyold rules andJ. is a
complete set of classified objects (complete universe).rfiquéar condition vector
of feature values provides the basis for a decision in didgegi an object in the set
Uc. To some extent, this form of training is analogous to selga training set used
to calibrate a neural network. During open-world trainiag,agent attempts to use
Ry to classify further (possibly new) objects by finding the dibion vector inRy
that most closely matches the experimental condition vefotoa new object. In
effect, the condition vectors iRy provide a “codebook” to define the space of input
patterns. The trick is to use the codebook to identify théufespattern of each new
object. When an objeatcannot be classified usifiy, a new classification rute =

dy is formulatedR; is augmented to reflect the knowledge about the changing uni-
verse (i.e.Re= RoU {X = dy}), andUp is augmented with newly classified objects
(Uc=UpU {x}). The inductive learning method resembles learning vectantjza-
tion and self-organizing feature maps described in [1, ThE approach outlined
above is simplified. For more advanced discussions on thghreat approach to
inductive learning, refer to Chaps. 3 and 25.

The studies of neural networks in the context of rough set$,[20, 14, 19, 21,
22, 24, 35-37, 41, 57, 60-63, 69, 74] and granular compufigg31, 40, 44—46,
48,52, 53, 55, 74] are extensive. An intuitive formulatidmdormation granulation
was introduced by Zadeh [70, 71]. Practical applicationsoafjh-neurocomputing
have recently been found in predicting urban highway traffiltime [14], speech
analysis [19, 24], classifying the waveforms of power systfaults [10], signal
analysis [36], assessing software quality [31], and cémf@autonomous vehicles
[20]. In its most general form, rough-neurocomputing pdas a basis for granular
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computing. A rough mereological approach to rough neuraborks springs from

an interest in knowledge synthesized (induced) from ssieegranule approxima-
tions performed by neurons (cooperating agents) [44]. Tétellbuted agent model
for a neural network leads naturally to nonlayered neuralvoek architectures,
that is, it is possible for an agent (neuron) to communicaa®gles of knowledge
to other agents (neurons) in its neighborhood rather thhowfimg the usual re-

stricted model of a movement of granules “upward” from nasrim one layer to

neurons in a higher layer. For this reason, the distribuggghamodel for rough-
neurocomputing is reminiscent of the Wiener internunciadipnodel for message-
passing between neurons in the human nervous system [68iremmd recently, the
swarm intelligence model [4].

This chapter is organized as follows. An overview of a granapproach to rough-
neurocomputing is presented in Sect. 2. A number of diffeiems of neurons are
briefly described in Sect. 3. The architectures of hybrigrf®iof neural networks
are described in Sect. 4.

2 Granular Approach to Rough-Neurocomputing

A brief introduction to a rough-neurocomputing model basadan adaptive cal-
culus of granules is given in this section. Information gr@rconstruction and pa-
rameterized approximation spaces provide the foundatiothe model of rough-
neurocomputing [44]. A fundamental feature of this mode¢hesdesign of neurons
that engage in knowledge discovery. Mechanically, suchroreureturn granules
(synthesized knowledge) derived from input granules.

2.1 Adaptive Calculus of Granules

To facilitate reasoning about rough neural networksadaptive calculus of granu-
leshas been introduced [40, 44, 48, 49]. The calculus of grangla system for
approximating, combining, describing, measuring, reampabout, and performing
operations on granules by intelligent computing unitsezhigents. In the calculus
of granules, the terimformation granulglor granule for short) denotes an assem-
blage of objects aggregated together by virtue of theirsitnajuishability, simi-
larity, or functionality. Intuitively, a granule is also leed a clump [70]. The term
calculuscomes from G.W. v. Leibniz, who thought of a calculus as atrimsent of
discovery inasmuch as it provides a system for combiningciilging, measuring,
reasoning about, and performing operations on objectsefdst such as terms in a
logical formula in a logical calculus or infinitesimally sthquantities in differen-
tial calculus [3, 13]. The calculus of classes described liseA Tarski [67] shares
some of the features found in a calculus of granules. The ttagsis synonymous
with set an assemblage of distinct entities, either individugtgafied or satisfying
certain specified conditions [6] (e.g., equivalence cldssamnsisting of all objects
equivalent tgy). In measure theory, a class is a set of sets [8]. The elenfiartlass
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is a subset. It is Georg Cantor’s description of how one caoi a set that comes
closest to what we have in mind when we speak of a granulatian,is, a set is
the result of collecting together certain well-determinbgects of our perception or
our thinking into a single whole (the objects are called elata of a set) [7]. In a
calculus of classes, the kinds of classes (e.g., empty, clasgrsal class), relations
between classes (e.g., inclusion, overlap, identify), apérations on classes|(
N, -) are specified. Similarly, a calculus of granules distisges among kinds of
granules (e.g., elementary granules, set-, concept-,ramdig-approximations), re-
lations among granules (e.g., inclusion, overlap, closgnand operations on gran-
ules (e.g., granule approximation, decomposition). lusthde observed that in the
case of information granules, we cannot use crisp equaligpmparing granules.
Instead, we are forced to deal with similarity, closenesd,lzeing a part of a whole
to a degree, concepts in considering relations betweenigsn

Calculus of granules includes a number of features not fanrttie calculus of
classes, namely, a system of agents, communication of igaptiknowledge be-
tween agents, and the construction of granules by agentomhe extent, the new
calculus of granules is similar to the agent-based, vahgsipg calculus of commu-
nicating systems proposed by Robin Milner [17, 18]. In Milaesystem, an agent
is an independent process possessing input and output pgeats communicate
via channels connecting the output (input) port of one agathtthe input (output)
port of another agent. Milner’s calculus is defined by a typld_, Act, X,V,K, J,€)
whereA is a set of nameg;, a set of labelsAct, a set of actionsX, a set of agent
variablesV, a set of valuesK, a set of agent constant; an indexing set; and
is a set of agent expressions. This calculus includes a gearffunformulating ex-
pressions. Even though adaptivity, granules of knowleridge;mation granulation,
parameterized approximations, and hierarchy of relatafiseing a part, to a de-
gree (fundamental features of the calculus of granules)nat found in Milner’s
calculus, it is possible to enrich Milner’s system to obtaivariant of the calculus
of granules.

The fundamental feature of a granulation system is the exgdhaf information
granules of knowledge between agents by transfer funcitiwhsed by rough mere-
ological connectives extracted from information systefnsalculus of granules has
been introduced to provide a foundation for the design ajdrimftion granulation
systems. The keystone in such systems is the granularityafledge for approx-
imate reasoning by agents [42]. Approximate reasoning forrmation granules is
not only caused by inexactness of information that we havalso by the fact that
we can gain efficiency in reasoning if it is enough to deliygpr@ximate solutions,
sufficiently close to ideal solutions. An agent is modeleé@®mputing unit that
receives input from its sensors and from other agents, ezgjunowledge by dis-
covering (constructing) information granules and by gtampproximation, learns
(improves its skill in acquiring knowledge), and adaptgats in granulation pa-
rameters of predicates in response to changing, for examsghsor measurements
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and feedback from other agents). For two finite 3&t¢ C U (universe of an infor-
mation system), we define standard rough inclusion using

H(X,Y) = card(XnY) if X is nonempty, angi(X,Y) =1, otherwise. (1)
ard(X)
A simple granule of knowledge of tygg, B,C,tr.tr’) has the forn{a,a’) wherep
is the standard rough inclusioB andC are subsets ok (attributes, that is, sensors,
of an information system), an,tr’ € [0,1] are thresholds on functions defined
with respect tau such thatu([a]g,[a’]c) > tr andp([a’]c,[a]g) > tr'. For exam-
ple, we assert thabr(y, B,C,tr,tr',a,a’) is true when(a,a’) is a (i, B,C,tr,tr’)
granule of knowledge. There are several sources of adggtihe scheme defined
by a calculus of granules. First, there is the possibiligt thanges can be made
in parameterg, B, C, tr, tr’ in the granulation predica®r(y, B,C,tr,tr',a,a’) for
any agenhg € Ag (set of agents). Second, new granules can be constructet/by a
agent in response to a changing environment. Third, newrinajusion measures
can be instituted by an agent by changing, for example, thenpeters in @-norm
and ans-norm used in definingl. The possibility that any agent can make one or
more of these changes paves the way toward an adaptivesimiugranules [42].
A recently formulated rough-fuzzy neural network has @édistirealized this idea
with an adaptive threshold relative to a set of real-valigbates without employ-
ing rough inclusion [19].

Each agent (neuron) distills its knowledge from granulgfesled) sensor measure-
ments, from granulated signals from other agents, and figgnoximate reasoning
in classifying its acquired granules. An agent commungageknowledge through
channels connected to other agents. An agent (neuronklegradjusting accessi-
ble parameters in response to feedback from other agert#d ke a nonempty
set of agents. In describing the elements of a calculus ofulea, we sometimes
write U instead ofU (ag), for example, wher& [andU (ag)] denotes a nonempty
set of granules (universe) known to agagte Ag. Similarly, when it is clear from
the context, we sometimes writev, St, A, M, L, link, O, AP_O, Unc.rel, Unc.rel,
H, Decrule, lab as a shorthand fdnv(ag), St(ag), A(ag), M(ag), L(ag), Link(ag),
O(ag), AP_O(ag), Unc_rel(ag), Unc_rule(ag), H(ag), Decrule(ag), respectively.
The calculus of granules establishes a scheme for a digtdlsystem of agents that
is characterized by the following tuple:

Scheme= (U, Inv, St Ag,Lim, A, M, L, link, (2)
O,AP_O,Uncrel,Unc_rel,H,Decrule,lab),

whereU denotes a nonempty set of granules (universe) known to agentAg,
Inv denotes an inventory of elementary objects availabkgtdt a set of standard
objects forag, Ag a set of agentd,rm a rough mereological logic [12] an in-
formation system o&g, M a pre-model oL.rm for ag, L a set of unary predicates
of ag, link a string denoting a team of agents communicating objegai{jrio an
agent for granulatior a set of operations of an agebtnc.rel a set of uncertainty
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relations,H a strategy for producing uncertainty rules from unceriametations,
Decrule a set of granule decomposition rules, dald a set of labels (one for each
agentag € Ag). The calculus of granules provides a computational fraamkvor
designing neural networks in the context of a rough set aprdo approximate
reasoning and knowledge discovery. The original idea offmaneworld model for
inductive learning by agents [26] has been enriched by denisig a distributed sys-
tem of agents that stimulate each other by communicatinguiga of knowledge
gleaned from granules received from other agents.

An approximate rough mereology with its own lodigm (syntax, grammar for
its formulas, axioms, and semantics of its models) provalésrmal treatment of
being a part in a degree. This paves the way toward a studyaofitgr inclusion de-
gree testing and measures of the closeness of granulesimipied by cooperating
agents [44]. The calculus of granules is considered adafdithe extent that the
construction of information granules by a distributed sgsiof interacting agents
will vary in response to variations in the approximate re@sg by agents about
their input signals (input granules). Agents usually livel dearn inductively in an
open system like that described by Pawlak [26]. Uew, Ag) denote a distributed
system of agents whetav denotes an inventory of elementary objects Agds a
set of intelligent computing units (agents). lag € Ag be an agent endowed with
tools for reasoning and communicating with other agentsiabbjects within its
scope. These tools are defined by components of the ageh(dabetedab) such
that

lab(ag) = [A(ag).M(ag),L(ag), Link(ag), St(ag), O(ag), ©)
AP_O(ag),Unc.rel(ag),Uncrule(ag),H(ag),Decrule(ag)],

where

¢ A(ag) = [U(ag),A(ag)] is an information system relative to ageag, where
the universéJ (ag) is a finite, nonempty set of granules containing elements of
the form(a,[a]) such thatr is a conjunction of descriptors afd] denotes its
meaning inA(ag) [26]. It is also possible that the objectsldfag) are complex
granules.

e M(ag) = [U(ag),[0,1],o(ag)] is a premodel oLym with a rough inclusion
Ho(ag) on the univers® (ag). The notatiorLym denotes a rough mereological
logic [42].

e L(ag) is a set of unary predicates (properties of objects) in aipasel calcu-
lus interpreted in the sét(ag). Further, formulas ot (ag) are constructed as
conditional formulas of logickg whereB C U (ag).

e Link(ag) is a collection of strings of the formgiag. . .agkag denoting a team
of agents such thaigyagy. . .agk are the children of ageagin the sense thatg
can assemble complex objects (constructs) from simplerctdgent by agents
ag:, agy,. . .,ag [19].

e St(ag) = {st(ag)1,...,st(ag)n} C U(ag) is the set of standard objectsaag

e O(ag) C{o]0:U(agi) x (ag) x -+ x U(ag) — U (ag) is operation at ag.
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e AP_O(ag) is a collection of pairs of the form
(o(agt), {ASi[o(ag). inl. .., AS(o(ag), in], ASo(ag), out }),

whereo(ag,t) € O(ag), kis the arity ofo(ag), t = agi,awp, . ..,ag € Link(ag),
AS[o(ag,t),in] is a parameterized approximation space correspondingie th
th argument ob(ag,t) andAS|o(ag,t),out] is a parameterized approximation
space for the output af(ag,t). The meaning ob(ag,t) is that an agent per-
forms an operation enabling the agent to assemble from @bjee U (ag;),
X2 € U(ag), ..., X € U(ag) the objectz € U(ag) that is an approximation
defined byASo(ag,t),out] of o(ag,t)(y1,y2,...,¥k) € U(ag) wherey; is the
approximation ofy defined byAS [o(ag,t),in]. One may choose here either a
lower or an upper approximation. For more details, refertiai 3.

¢ Unc.rel(ag) is a set of uncertainty relationsncrel; of type

[oi (agt),pi(ag),ags,. .-, ag,ag, (4)
Ho(ad1), .-, o (@) ; o (2Q) ,
st(agi);, ..., st(atk); , st(ag);

of agentagwhereag, ag,. . .,ag € Link(ag), oi(ag,t) € O(ag) andp; is such
that pj [(x1,€1),. .., (X, &), (X,€)] holds forx € U(ag), x1 € U(ag), ..., Xk €
U(atk), &,€1,...,& € [0,1] iff Po[X;j,st(ag;j)i] > €j, j =1,...,kfor the collec-
tion of standardst(ag)i, - . ., st(ag)i, st(ag)i such thabj(ag,t)[st(ag)i,-- -,
st(agk)i] = st(ag);. Values of the operation are computed in three stages.
First, approximations of input objects are constructedxtNean operation is
performed. Finally, the approximation of the result is doansted. A relation
uncrel; provides a global description of this process. In practioe; rel; is
composed of analogous relations corresponding to the steges. The rela-
tion uncrel; depends on parameters of approximation spaces. Hencetatio ob
satisfactory decomposition (similarly, uncertainty, aodon) rules, it is neces-
sary to search for satisfactory parameters of approximagaces. This search
is analogous to weight tuning in traditional neural comgiates.

¢ Unc_rule(ag) is a set of uncertainty rulamcrule; of type,

if oj(agt)[st(ag)i,...,st(a)i] = st(ag); and (5)
x1 € U(ag),-..,X € U(ag) satisfy the conditions
Ho[Xj,St(agj)i] > e(ag) fori=1,...,k,
then Lo[oi(ag t)(xa,...,x),st(ag)i] > file(agn), ... e(agy)],

whereag, ag, ..., ag € Link(ag) and f; : [0,1]¢ — [0,1] is a so-called rough
mereological connective. Uncertainty rules provide fioral operators (ap-
proximate mereological connectives) for propagating uad®y measure va-
lues from the children of an agent to the agent. The applinadf uncertainty
rules is in negotiation processes where they inform agdiaatgplausible un-
certainty bounds.



22

S.K. Pal, J.F. Peters, L. Polkowski, A. Skowron

e H(ag) is a strategy that produces uncertainty rules from uncextag¢lations.
¢ Decrule(ag) is a set of decomposition rules,

[q)(agl):---:q)(ag():q)(ag)]: (6)
of type[o; (ag,t) ,ags, ..., ag ag of agent ag, where
®(ag) € L(ag),....P(ag) € L(ag), P(ag) € L(ag), ()

ag,ad,...,adk € Link(ag), and there exists a collection of standastigg )i,
..., st(agk)i, st(ag)i such thab;(ag,t)[st(ag)i, . . ., St(agk)i] = st(ag); and these
standards satisf®(ag: ), . .., P(agk), P(ag), respectively. Decomposition rules
are decomposition schemes, that is, such rules descrils¢ethéardst(ag); and
standardsst(agy)i, ..., st(ag)i from which the standardt(ag); is assembled
undero; relative to predicates that these standards satisfy.

It has been pointed out that there is an analogy betweenlcafagranules in dis-
tributed systems and rough-neurocomputing [44]:

1. An agentag with input and output ports creating communication linkghwi

other agents provides a model for a neundanalogously, agestg) with inputs
supplied by neurongs, ..., Nk (analogously, agentsg,, ..., ag), responds
with output byn, andn is designed with a parameterized family of activation
functions represented as rough connectives. In effectuaoneresembles the
model of an agent proposed by Milner [17].

. Values of rough inclusions are analogous to weights iditicmal neural net-

works.

. Learning in a system governed by an adaptive calculus arfudes is in the

form of back propagation where incoming signals are assigmoper scheme
(granule construction) and a proper set of weights in nagjoti and coopera-
tion with other neurons.

2.2 Granulesin Distributed Systems

In this section, the fulfillment of an ontology of approxiraaeasoning stems from
the consideration of granular computing in the context abpeeterized approxi-
mation spaces as a realization of an adaptive granule aalctihis realization is
made possible by introducing a parameterized approximagace in designing a
reasoning system for an agent. A step toward the realizafi@n adaptive gran-
ule calculus in a rough-neurocomputing scheme is desciib&ds section and is
based on [44]. In a scheme for information granule constrndh a distributed sys-
tem of cooperating agents, weights are defined by approkdmapaces. In effect,
each agent (neuron) in such a scheme controls a local pararegt approximation
space.
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Let us now consider a definition of a parameterized approtximapace. A pa-
rameterized approximation space is a system

AS#,*,$ = (U, L4, R*:V$)7 (8)
where #,*, $ denote vectors of parameté&tss a nonempty set of objects, and

e I4:U — O(V) is anuncertainty functiowhere] (U) denotes the power set of
U; Ix(X) is called theneighborhoof x € U;

¢ R, CO(V) is a family ofparameterized patterns

e vg:0(U) xO(U) — [0,1] denotesough inclusion

The uncertainty function defines for every objrdh U a set of similarly described
objects. A constructive definition of an uncertainty funatican be based on the
assumption that some metrics (distances) are given obuwtrivalues. The family
R. describes a set of (parameterized) patterns (e.g., regiegefor fixed values of
parameters, the sets described by the left-hand sides isfatecules). A seX C U

is definable orAS;, g if it is a union of some patterns. The rough inclusion func-
tion vg defines the value of inclusion between two subsetd .ofn particular, for
any neighborhood, its inclusion degree in a given pattembsacomputed. More-
over, for classifiers, the degree of inclusion of patterndenision classes can be
estimated. The neighborhobgdx) can usually be defined as a collection of objects
close tox. Also note that for some problems, it is convenient to definerecertainty
set function of the fornhy : O (U) — O (U). This form of uncertainty function works
well in signal analysis, where we want to consider a domagr @ets of sample
signal values.

For a parameterized approximation sp# ., ¢ and any subseX C U, the lo-
wer and upper approximations ¥fin U based only on an uncertainty function and
rough inclusion are defined as follows:

LOW (AS;. 5. X) = {x € U| vg(l4(x),X) = 1} [lower approximatioh  (9)
UPP(AS;. s, X) = {xe U|vg(l4(x),X) > 0} [upper approximatich (10)

However, if one would like to consider the approximation ohcepts in an ex-
tensionU’ of U by taking patterns and their inclusion degrees in the caiscépe
definition of concept approximation should be changed. Baeler can find more
details on concept approximations in Chaps. 3, 6, and 25.

Sets of objects that are collections of objects defined byraeniainty function

or patterns from a data table are examples of informationuges. A parameterized
approximation space can be treated as an analogy to a netwairk weight (see
Fig. 1). In Fig. 1,wy, ..., Wy, 2, f denote the weights, aggregation operator, and
activation function of a classical neuron, respectivelyeveaAS (P), ..., A&(P)
denote parameterized approximations spaces where agegtsp input granules
Gy, ..., Gk and O denotes a (parameterized) operation from a given set of oper
ations that produce the output of a granular network. Tharpaters inP of an
approximation space should be learned to induce the releév@anmation granules.
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Fig. 1. Comparison of classical and granular network architesture

3 Rough Neurons

The termrough neurorwas introduced in 1996 by Lingras [15]. In its original form,
a rough neuron was defined relative to upper and lower bowamdsjnputs were
assessed relative to boundary values. Hence, this formuobnenight also be called
a boundary value neuron. This form of rough neuron has beed spredicting
urban high-traffic volumes [4]. More recent work considensgh-neural networks
(RNNs) with neurons that construct rough sets and outpuléigeee of accuracy of
an approximation [35, 36]. This has led to the introductibagproximation neurons
[36] and their application in classifying electrical powsststem faults [10], signal
analysis [37], and in assessing software quality [29]. Aforimation granulation
model of a rough neuron was introduced by Skowron and Stagdnithe late
1990s. This model of a rough neuron is inspired by the notiba oooperating
agent (neuron) that constructs granules; perceives byuriagsvalues of availa-
ble attributes, granule inclusion, granule closenessbgrgranule approximation;
learns by adjusting parameters in its local parameter spadeshares its knowledge
with other agents (neurons). A rough-fuzzy multilayer pgtcon (MLP) useful in
knowledge encoding and classification was introduced ir8180Banerjee, Mitra,
and Pal [2]. The study of various forms of rough neurons is@fa growing number
of papers on neural networks based on rough sets. Transdliseussed in Chap. 8
transforming rough set arguments into rough sets can alsomsidered as rough
neurons.



2. Rough-Neuro Computing: An Introduction 25

3.1 Set Approximation

Rough set theory offers a systematic approach to set appadixin [26]. To begin,
let S= (U, A) be an information system whelteis a nonempty, finite set of objects
andA is a nonempty, finite set of attributes, whereU — V, for everya € A. For
eachB C A, there is associated an equivalence relatiai (B) such that

Inda(B) = {(x,X) € U%|Vac B.a(x) = a(X)}. (11)

If (x, X) € Inda(B), we say that objects andx are indiscernible from each ot-
her relative to attributes frorB. The symbol X]g denotes the equivalence class
of Inda(B) defined byx. Further, partition symbol U/Ing(B) denotes the family
of all equivalence classes of relation k{&) on U. ForX C U, the setX can be
approximated only from information containedBrby constructing @-lower and
B-upper approximation denoted BX andBX, respectively, where

BX = {X|[x]z C X} andBX = {x|[x|gN X # 0} . (12)

3.2 Rough Membership Set Function

In this section, a set function form of the traditional rouglembership function
introduced in [54] is applied. LeS = (U, A) be an information systenB C A,
and let L]g be an equivalence class of an objaat U of Inda(B). A set function
uB:0(U) — [0, 1] defined by (13)

foranyX e 0(Y), u€ U, is called aough membership function

A rough membership function provides a classification messiasmuch as it tests
the degree of overlap between the Xeand the equivalence clafgg. The form
of rough membership function presented above is slighffgdint from the clas-
sical definition [27], where the argument of the rough mersbigrfunction is an
objectu and the seX is fixed. For example, leXg,,, € {BX,BX} denote a set
approximation. Then, we compute the degree of overlap et¥eg, ., and|uls
by

Card( [U] BN xBapprOX)
WS (Xeapprod = card([u]g)

(14)

In the sequel, we also wriig, g(Xg instead ofl (X, o0 -

approx)
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3.3 Decision Rules

In deriving decision system rules, the discernibility matmd discernibility func-
tion are essential. Given an information syst8e (U, A) with n objects, theanx n
matrix (cij ), called the discernibility matrix o [denotedV(S)], is defined as

cj ={ae Ala(x) #a(xj)}, fori,j=1,...,n. (15)

A discernibility functionfys) for the systenSis a Boolean function afn Boolean
variablesa;, .. ., ap, corresponding to attributes, ..., am, respectively, and defined

by
fm(g (@1 -,am) = A{Cj| 1< j <i <n,cj # 0} wherecj = {a'| a€ cjj}. (16)

Precise conditions for decision rules can be extracted &aliscernibility matrix as
in [43, 47]. For the information syste®= (U,A), let B C A and letD (V,) denote
the power set o¥,, whereV, is the value set oh. For everyd € A— B, a decision
functiondBB :U — 0O(Vp) is defined in (17) as in [56]:

d2(u) = {ve V5| 3u € U, (U,u) € Indg andd(u') = v} . (17)

In other wordsdéB(u) is the set of all elements of the decision colutnaf S such
that the corresponding object is a member of the same equismlclass as argu-
mentu. The next step is to determine a decision rule with a minimahiper of
descriptors on the left-hand side. Pdiasv), wherea € A v € V, are calleddescrip-
tors. A decision rule over the set of attributésand value¥ is an expression of the
following form:

aj, (u) :vilA...Aaj(ui) =V A AaE () =V, ? d(u) =V, (18)

whereu; € U, vi; € Vajj ,VEVy, j=1,...,r andr < card(A). The fact that a rule is
true is indicated by writing it in the following form:

(a'il :Vil)/\"'/\(air :Vir) :S> (ap:Vp)- (19)

In practice also are important rules that are tru&tio the degree in which the set
defined inSby the left-hand side of the rule is included in the set definegby the
right-hand side of the rule. The left- and right-hand sidesutes are information
granules inS. Then the degree mentioned above can be interpreted as theedeg
of inclusion of such information granules. The decisioresutan also be treated as
information granules (see Chap. 3).

Let RED(S) be a reduct set generated from a decision systemg., a set of lo-
cal reducts with respect to objects [12For decision systers, the set of decision

1 Note that there are many different kinds of reducts and nuistlod selection of relevant
reducts used in constructing data description models (hap.@25).
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rules constructed with respect to a redRot RED(S) is denoted byOPT(S R).
Then the seOPT(S) of all decision rules derivable from reductsRED(S) is the
following set:

OPT(S) = U{OPT(SR)| Re RED(S)}. (20)

3.4 Interval-Based Rough Neuron

An interval-based rough neuromas introduced in 1996 [15]. A brief introduction to
this form of rough neuron is given in this section. Rough oesgrare defined in the
context of rough patterns. Objects such as a fault signahity deather can be de-
scribed by a finite set of features (e.g., amplitude, typeafeform, high-frequency
component, rainfall, temperature) characterizing ea¢gbatbThe description of an
object is am-dimensional vector, whenmis the number of features used to charac-
terize an object. A pattern is a class of objects based onalues of some features
of objects belonging to the class.

Let x be a feature variable in the description of an object. Furteex, X represent
upper and lower bounds &f In a rough pattern, the value of each feature variable
x is specified by, X (called rough values). Rough values are useful in reprasgent
an interval or set of values for a feature, where only the uppe lower bounds
are considered relevant in a computation. This form of rauglron can be used to
process intervals in a neural network.

Letr,r.T denote a rough neuron, lower neuron, and upper neuron,atdsgg. A
rough neuron is a pair, ) with three types of connections: i/o connections,tido
connections t@, and connections betweerandT. In effect, a rough neuron stores
the upper and lower bounds of input values for a feature and these bounds in
its computations. Leih;, outj, wi; denote the input to neurdnthe output from neu-
ron j, and the strength of the connection between neuirand j, respectively. The
input to an upper, lower, or conventional neuramcalculated as a weighted sum as

n
inj = Z wijoutj (neurorj is connected to neurdi (22)
j=1

Assuming the subscript=r, we obtain the input to a lower neuron, and fet T,

we obtain the input to an upper neuron. Léke a transfer function used to evaluate
the input to an upper (lower) neuron. Then the output of areafipwer) neuron is
computed as in (22) and (23), respectively:

out = max(t (inr) ,t (iny)]; (22)
out, = min(t (ing) ,t(in,)]. (23)
The output of a rough neuron will be computed from

out — out

rough.neuronout put= .
g P averagéoutr, out,)

(24)
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The inputs to rough neurons considered in [15] are relatelév@ations in measure-
ments of some attribute value. One can consider anotherdase deviations of

a real function defined, e.g., on the lower approximation givan setX, are used

to define inputs to neurons. Another possibility to consideteviations of rough

membership function values on elements of a tolerance (dassSect. 3.5).

3.5 Approximation Neurons

This section considers the design of rough neural netwoaked) on set approxi-
mations and rough membership functions, and hence, thisdbnetwork is called
an approximation neurorfAN). The approximation neuron was introduced in [9],
and elaborated in [35, 36]. Preliminary computations in &hake carried out with
a layer of approximation neurons, which construct rough aatl where the output
of each approximation neuron is computed with a rough meshiygfunction. This
section considers ANs constructed with one type of roughareuhe approxima-
tion neuron. LeB, F, Fg,,,. [ f]5 denote a set of attributes, a finite set of neuron in-
puts (this is an archival set representing past stimuliria fof memory accessible to
a neuron), a set approximation, and an equivalence clasainog measurements
derived from known objects, respectively. The basic comfporn steps performed
by an approximation neuron are illustrated in Fig. 2.

F
ur, ()
compute rmf’ approx
—
o

Fig. 2. Approximation neuron

The approximation neuron measures the degree of overlapeif s andFa, o
Let us consider a more general case when instead of an inciisitity class[f]g,
an input is defined by a more general information granule (Gesp. 3), i.e.1-
tolerance class dff]g, (a family {[f']g : fTf’}). The output of a neuron is defined
by two numbers representing the deviation of the rough meshige function on
elements of the tolerance class. Other forms of rough newamdescribed in [37].

3.6 Decider Neuron

The notion of adecider neurorwas introduced in [35, 36] and applied in [37].
A decider neuron implements a collection of decision rulggipconstructing a



2. Rough-Neuro Computing: An Introduction 29

condition vectoitex, from its inputs, which are rough membership function values
(ii) discovering the rule; => d; with a condition vectoc; that most closely matches
an input condition vectotexp, and (i) outputsAND(1 — g, d;) whered; € {0,1},
and relative errog = ||Cexp— Gil|/||Ci]| € [0, 1] where]| || denotes the vector length
function. Whene = 0, theny,ye = AND(1— g, d;) = d;, and the classification is
successful. I§ = 1, thenyye = AND(1— g, di) = O indicates the relative errorin an
unsuccessful classification. A flow graph showing the basicputations performed
by a decider neuron is given in Fig. 3.

{0 ()} s
d
selectRule ' ,

Fig. 3. Flow graph for decider neuron

The setrmf = {2 (f)}acs consists of approximation neuron measurements in re-
sponse to the stimulus provided a new objéatequiring classification. The ele-
ments of the setmf are used by a decider neuron to construct an experimental
condition vectokey,. A second input to a decider neuron is theRet {¢c; = d;}.

The elements of the s&are rules that have been derived from a decision table us-
ing rough set theory. LedelectRulelenote a process that implements an algorithm
to identify a condition vector in one of the rules of R, thatshaosely matchesey,.

Let us observe that one of the input of decider neuron is aorrmdtion granule
represented by a set of decision rules. The rough neuroidsad is used to mea-
sure the degree of closeness of objetb an information granule represented by
the set of decision rules.

It is worthwhile mentioning that the case considered is \v@mple. Instead of a
rough membership function, computed relative to attribfitemB, one should con-
sider a relevant familZs, ..., Cy of subsets oB. For classifiers based on decision
rules, such subsets are defined by reducts local with regpebjects [12]2

3.7 Architectureof Approximation Neural Networks

Approximation neural networks (ANN) are well suited to doly classification
problems where nuances in a feature space over time candreeglérom rough ap-
proximations. This form of rough neural computation hastmeccessfully applied

2 |n the more general case, one can consider, insteadfaficlusion, degrees of input infor-
mation granules into the information granules represgmevant patterns for decision
classes (see Chaps. 3 and 25).
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in two applications: classifying the waveforms of eledtigower system faults ([9],
[10, 37] and in determining the number of changes requireal $oftware system
based on quality measurements [31]. In this section, a buiefmary of the results
of the software quality study are given.

Sample computations with a set of 11 approximation neuromgiaen in Table 1.
The first 11 columns of Table 1 are rough membership functidpus, and the last
column is a target value for the aggregate of the rmf valubs. t&rget column in
Table 1 serves as a decision column.

Table 1. Sample approximation neuron output values

W0 EPOX) HEPX) BE0X) HEPX) HEX) W) EPX) HEPOK) HEK) HEX) Target

1 1 1 1 1 09 09 072 047 066 1 1
1 1 1 1 1 09 09 072 04 0.66 11

1 1 1 1 1 09 0927 072 047 066 1 1
0.68 0.89 0.74 078 O 0 0 0 057 0 0.230

During calibration of the ANN, adjustments are made to thetts (strengths of
connections) associated with approximation neuronsiveltd a probabilistic sum
of the rmf values and target value. For each test input, titeubwf an ANN indi-
cates the probability that the test input belongs to thefseeasurements associated
with theith life cycle product attribute. Lef denote an output neuron (see Fig. 4)
that computes the sum of all weighted outputs from the appraton neurons in
the first layer. A software metric (e.g., reusability, coeyity, maintainability [6])

is used to define each life cycle product quality attribute.

The application of the rough mereological approach in safeaquality measure-
ment is described in [38]. The basic idea is to charactehiggtobal quality assess-
ment of a given software product using a vector of rough meggcal distances

(cf. rows of Table 1) of quality measurements relative to aseim set of industry

standards. Sample calibrations of a rough membershipiumotural network are

shown in Figs. 5 and 6. In the case considered, constructedriation granules

are degrees of inclusion of patterns in decision classesy &te computed as linear
combinations of rough membership degrees of a given injiuthe setX.

3.8 Architectureof Approximation-Decider Neural Networ k

The output of the approximation neural network in Fig. 4 seras a module in tes-
ting the quality measurements of a particular life cycledurt relative to a particu-
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I Target
:
wy Wy,
Rough neuron
' (X) ' (X)
A
u I
X
Fig. 4. Approximation neural network
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Fig.5. Sample calibration of approximation neural network

lar number of changes required to correct product qualificiémcies. For the study
of the quality of life cycle products, 17 such approximatieural networks were
constructed. The outputs of thk€k = 17) ANNs form a condition vector of the form
[e1 &...&], where e denotes an experimental approximation neuron output froug
membership function) value. During training, a test set afidition vectors and
corresponding decisions (specified number of changeseltoitfor each condition
vector) was constructed. A set of decision rules is thervddrand incorporated in

a neural network output neuron that is called a decider me(see Fig. 7). During
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% Error Calibration of 1* rough neural network
o.or

ooer

i}

i

Do

ooar

ooiE

0 0 40 &0 BD 100 12D 140 18D 1A0 OO
Iteration

Fig. 6. Sample calibration of approximation neural network (cd.)

testing, each test condition vector [t.tx] is matched with the closest training set
condition vector in the set of rules in the decider neurore diitput of the composite
rough neural network is the decision of a selected rule iniduéder neuron (see Fig.
8). The design of a neural network with a layer of rule-bassmatons has been used
in a feed-forward multilayer neural network [64].

1 ]
«Subbsystem» «Subbsystem»
ANN1 ANN1
\—| \_\
[e e] «Subsystem» de [t ] «Subsystem» 4
L Tk Decider L Tk Decider

— / X -
(Ruts (Rules)

Fig. 7. Training network Fig. 8. Testing network

For the experiment described in this section, 17 approxanateural network mo-
dules (atotal of 187 approximation neurons with a strudiesthat in Fig. 4) were
incorporated into the design of a composite neural netwatk @ single neuron
in the output layer, namely, a decider neuron. After catibreof the subnetworks
(ANN4, ..., ANNy), formation of a decision table, and derivation of decigioles,

the result is the training network in Fig. 7. During testitige network in Fig. 8 is
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used to find a rule with a condition vector with the best matla trule residing
in the decider neuron. As a result, we obtain a basis for nga&im approximate
decision about the number of changes required for the péatitife cycle product
being evaluated. The results of sample training sessi@nstewn in Fig. 9.

Number of

100 changes Output of 1% learning iteration
BOF
ok Learning
Target
40 L
33 L
o ) .
] 50 100 150 200 250
Number of File Index
150 changes Output of final learning iteration
100 ——— Learning i
ol Target 1
0 J
.50 . L . .
0 50 100 150 200 250

File Index

Fig.9. RNN performance

4 Hybrid Neural Networks

A number of hybrid neural networks with architectural desidpased on rough set
theory and more traditional neural structures have begogsedrough-fuzzy MLP
[19], evolutionary rough-fuzzy MLR24], interval-based rough-fuzzy netwoifd$],
andapproximation rough-fuzzy network37]. It should also be mentioned that it
is common to use rough set theory as the basis for preprogasgiuts to a neural
network (see Chap. 25). In this section, two recent formsytirid networks are
briefly described: a rough-fuzzy multilayer perceptronnaémetwork [19] and a
rough-fuzzy approximation neural network [29]. In rouglzfy neural networks,
some patterns are extracted using rough set methods. Nekt,patterns can be
fused using fuzzy logic rather than classical propositicnanectives.

4.1 Rough-Fuzzy MLP

The rough-fuzzy multilayer perceptron neural networkadirced in [19], was de-
veloped for pattern classification. This form of MLP comlsitmth rough sets and
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fuzzy sets with neural networks for building an efficient geationist system. In this
hybridization, fuzzy sets help in handling linguistic infnformation and ambiguity
in output decision, whereas rough sets extract domain ledyd for determining
network parameters.

4.2 Architectureof Rough-Fuzzy MLP Network

The first step in designing a rough-fuzzy MLP is to establidkasis for working
with real-valued attribute tables of fuzzy membership galur he traditional model
of a discernibility matrix given in (15) is replaced by

cj ={aeBl|a(x)—a(xj)| >Th} (25)

fori,j =1,...,ng, whereT his an adaptive threshold. La,a, correspond to two
membership functions (attributes) whexeis steeper compared &3 (see Fig. 10).
It is observed that; > r,. This results in an implicit adaptivity of h while com-
putingg;; in the discernibility matrix directly from the real-valuattributes. Herein
lies the novelty of the proposed method. Moreover, this tffieresholding also en-
ables the discernibility matrix to contain all represeingpoints/clusters present in
aclass. This s particularly useful in modeling multimodalss distributions. Rough
set methods are used to find patterns relevant to decisiesedaWhile designing

Fig. 10. lllustration of adaptive thresholding of membership fuoes

the initial structure of the rough-fuzzy MLP, the union oéttules ofl classes is
considered. The input layer consists of &tribute values (it is assumed that each
attribute can have three fuzzy valuésy, medium, highwhereas the output layer
is represented blyclasses. The hidden layer nodes model the first level (inogsm
operator in the antecedent part of a rule, which can be e#thtmmjunct or a dis-
junct. The output layer nodes model the outer level operamtich can again be
either a conjunct or a disjunct. For each inner level operatwresponding to one
output class (one dependency rule), one hidden node isatedidOnly those input
attributes that appear in this conjunct/disjunct are cotetkto the appropriate hid-
den node, which in turn is connected to the correspondingubuiode. Each outer
level operator is modeled at the output layer by joining tbheesponding hidden
nodes. Note that a single attribute (involving no inner leygerators) is directly
connected to the appropriate output node via a hidden noaeaintain uniformity
in rule mapping.
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Modular Training A method of learning the parameters of rough-fuzzy MLP has
recently been described [24] using the modular conceptishzdsed on the divide
and conquer strategy. This provides accelerated trainimgaacompact network
suitable for generating a minimum number of classificatidas with high certainty
values. A new concept of a variable genetic mutation opeiatintroduced for
preserving the localized structure of the constitutivevdeolge-based subnetworks
while they are integrated and evolved.

4.3 Rough-Fuzzy Approximation Neural Network

A rough-fuzzy approximation neural network gains its namof the fact that it
contains neurons designed using rough set theory connexteatious forms of
neurons designed using fuzzy set theory (see, e.g., Fig. 11)

4.4 Architectureof a Sample Rough-Fuzzy Neural Network

The sample rough-fuzzy neural network described in thisiaeconsists of four
layers (see Fig. 11). The first layer of the network in Fig. éfitains approximation
neurons connected to very basic fuzzy neurons (layer 2rtirapute the degree of
membership of rough neuron outputs in various distribuidrayer 2 neurons are
connected to AND neurons (also called logic neurons [29)xlbe an approxima-

AND
Neuron
Layer

Fuzzy
Neurons
Layer

Rough
Neurons
Layer

Fig. 11. Rough-fuzzy neural network

tion neuron output, and lefi(x) be the degree of membershipofn a particular
distribution. Then defined parameterandw denote a cutoff (reference point) and
strength of connection (weight), respectively. Then, wingea fuzzy implication
r — x by

(r—>x):{)7( if x<r
min (1, %) otherwise
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Lett (“and” usually interpreted amin) ands (“or” interpreted as a probabilistic
sumhere) denoté-norm ands-norm operators from fuzzy set theory [29]. An AND
neuron has output z defined as

n -
z:_Tl [Xi SW] = Min[Xq SWi, ..., Xn SWh) .
1=

The model for an AND neuron is specialized relative to fuzmplication as
n
z= rin:i{n{[ri —= (X)) +wi—[ri = f(X);]wi}.

The output layer of the network in Fig. 11 consists of OR naearthat aggregate
the information gleaned from connections to AND neuron odel for an OR
neuron is

n
y= i§1[2tui] = (z1tuy)s...s(zntup).

In the model for an OR neuron; denotes the strength of connection between the
OR neuron and thigh AND neuron.

45 Supervised Learning Approach to Calibration of Rough-Fuzzy Neural
Networ k

The calibration scheme for rough-fuzzy neuron networkgidlesd in this section
employs the standard method for supervised learning. Witlat\fs is a brief sum-
mary of the calibration steps:

Initialize cutoffr and network strength of connectiowsandu.

Introduce a training set.

Computey of the output OR neuron.

Compute erro® by comparing network outputs with a target value using (26).

N

Q =target—yv. (26)

5. Leta > 0 denote the positive learning rate. Based on the value €or26),
adjust ther,w, andu parameters using the usual gradient-based optimization
method suggested in (27) and (28):

0Q

dparam’

param(new) = param—d (27)

0Q 0Q oy

dparam 9y dparam (28)

A more detailed explanation of how one trains a network dairtg combinations
of AND and OR nodes is given in [31].
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5 Concluding Remarks

A scheme for designing rough neural networks based on antiedaglculus of
granules for distributed systems of cooperating agentsbieas presented. This
scheme is defined in the context of an approximate rough regygaranule con-
struction and granule approximation algorithms, measoirgsanule inclusion and
closeness, and local parameterized approximation spadestivity is also a fea-
ture of this scheme, where agents can change local paraniretessponse to chan-
ging signals from other agents and from the environment. élmer of models of
rough neurons have been proposed. Four such models havbrefgndescribed in
this chapter: interval-based neurons, approximationaresjrdecider neurons, and
rough-fuzzy MLPs. Four rough-neurocomputing architeetirave also been briefly
considered: approximation neural network, approximatienider neural network,
rough-fuzzy neural network, and rough-fuzzy MLP network.
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