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Summary. This chapter presents a new paradigm for neurocomputing that has its roots in
rough set theory. Historically, this paradigm has three main threads: production of a training
set description, calculus of granules, and interval analysis. This paradigm gains its inspiration
from the work of Pawlak on rough set philosophy as a basis for machine learning and from
work on data mining and pattern recognition by Swiniarski and others in the early 1990s. The
focus of this work is on the production of a training set description and inductive learning us-
ing knowledge reduction algorithms. This first thread in rough-neurocomputing has a strong
presence in current neurocomputing research. The second thread in rough-neurocomputing
has two main components: information granule constructionin distributed systems of agents
and local parameterized approximation spaces (see Sect. 2.2 and Chap. 3). A formal treatment
of the hierarchy of relations of being a part to a degree (alsoknown as approximaterough
mereology) was introduced by Polkowski and Skowron in the mid- and late-1990s. Approx-
imate rough mereology provides a basis for an agent-based, adaptive calculus of granules.
This calculus serves as a guide in designing rough-neurocomputing systems. A number of
touchstones of rough-neurocomputing have emerged from efforts to establish the founda-
tions for granular computing: cooperating agent, granule,granule measures (e.g., inclusion,
closeness), and approximation space parameter calibration. The notion of a cooperating agent
in a distributed system of agents provides a model for a neuron. Information granulation and
granule approximation define two principal activities of a neuron. Included in the toolbox
of an agent (neuron) are measures of granule inclusion and closeness of granules. Agents
(neurons) acquire knowledge by granulating (fusing) and approximating sensor inputs and
input (granules) from other agents. The second component ofthe granular form of rough-
neurocomputing is a new approach to training agents (neurons). In this new paradigm, train-
ing a network of agents (neurons) is defined by algorithms foradjusting parameters in the pa-
rameter space of each agent. Parameters accessible to roughneurons replace the usual scalar
weights on (strengths-of-) connections between neurons. Hence, learning in a rough neural
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network is defined relative to local parameter adjustments.In sum, the granule construction
paradigm provides a model for approximate reasoning by systems of communicating agents.
The third thread in rough-neurocomputing stems from the introduction of a rough set ap-
proach to interval analysis by Banerjee, Lingras, Mitra, and Pal in the later part of the 1990s.
This work has led to a variety of new rough-neurocomputing computational models. This
chapter gives a brief presentation of an agent (neuron)-based calculus of granules. The de-
sign of different kinds of rough neurons is considered. Architectures of a number of different
rough-neurocomputing schemes are also considered.

1 Introduction

The hint that rough set theory provides a good basis for neuro-computing can be
found in a discussion about machine learning by Zdzislaw Pawlak in 1991 [26]. In-
ductive learning is divided into two phases that are reminiscent of training in classi-
cal neural computing: closed-world training and open-world training. Closed-world
training focuses on constructing a pair

�
R0 �U0�, whereR0 is an initial set of classi-

fication rules andU0 is an initial set of classified objects (initial universe). For each
objectx �U0, an agent is able to classifyx based on identified features of the object
(e.g., color, shape, weight, velocity). The aim of open-world training is to achieve
complete knowledge of the universe by constructing

�
Rc �Uc�, whereRc is created

either as an initial set of classification rules or by modifying old rules andUc is a
complete set of classified objects (complete universe). A particular condition vector
of feature values provides the basis for a decision in classifying an object in the set
Uc. To some extent, this form of training is analogous to selecting a training set used
to calibrate a neural network. During open-world training,an agent attempts to use
R0 to classify further (possibly new) objects by finding the condition vector inR0

that most closely matches the experimental condition vector for a new object. In
effect, the condition vectors inR0 provide a “codebook” to define the space of input
patterns. The trick is to use the codebook to identify the feature pattern of each new
object. When an objectx cannot be classified usingR0, a new classification ruleχ �
dχ is formulated,Rc is augmented to reflect the knowledge about the changing uni-
verse (i.e.,Rc= R0 ��χ � dχ��, andU0 is augmented with newly classified objects�
Uc= U0��x���The inductive learning method resembles learning vector quantiza-

tion and self-organizing feature maps described in [1, 11].The approach outlined
above is simplified. For more advanced discussions on the rough set approach to
inductive learning, refer to Chaps. 3 and 25.

The studies of neural networks in the context of rough sets [2, 5, 10, 14, 19, 21,
22, 24, 35–37, 41, 57, 60–63, 69, 74] and granular computing [12, 31, 40, 44–46,
48, 52, 53, 55, 74] are extensive. An intuitive formulation of information granulation
was introduced by Zadeh [70, 71]. Practical applications ofrough-neurocomputing
have recently been found in predicting urban highway trafficvolume [14], speech
analysis [19, 24], classifying the waveforms of power system faults [10], signal
analysis [36], assessing software quality [31], and control of autonomous vehicles
[20]. In its most general form, rough-neurocomputing provides a basis for granular
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computing. A rough mereological approach to rough neural networks springs from
an interest in knowledge synthesized (induced) from successive granule approxima-
tions performed by neurons (cooperating agents) [44]. The distributed agent model
for a neural network leads naturally to nonlayered neural network architectures,
that is, it is possible for an agent (neuron) to communicate granules of knowledge
to other agents (neurons) in its neighborhood rather than following the usual re-
stricted model of a movement of granules “upward” from neurons in one layer to
neurons in a higher layer. For this reason, the distributed agent model for rough-
neurocomputing is reminiscent of the Wiener internuncial pool model for message-
passing between neurons in the human nervous system [68] and, more recently, the
swarm intelligence model [4].

This chapter is organized as follows. An overview of a granular approach to rough-
neurocomputing is presented in Sect. 2. A number of different forms of neurons are
briefly described in Sect. 3. The architectures of hybrid forms of neural networks
are described in Sect. 4.

2 Granular Approach to Rough-Neurocomputing

A brief introduction to a rough-neurocomputing model basedon an adaptive cal-
culus of granules is given in this section. Information granule construction and pa-
rameterized approximation spaces provide the foundation for the model of rough-
neurocomputing [44]. A fundamental feature of this model isthe design of neurons
that engage in knowledge discovery. Mechanically, such neurons return granules
(synthesized knowledge) derived from input granules.

2.1 Adaptive Calculus of Granules

To facilitate reasoning about rough neural networks, anadaptive calculus of granu-
les has been introduced [40, 44, 48, 49]. The calculus of granules is a system for
approximating, combining, describing, measuring, reasoning about, and performing
operations on granules by intelligent computing units called agents. In the calculus
of granules, the terminformation granule(or granule, for short) denotes an assem-
blage of objects aggregated together by virtue of their indistinguishability, simi-
larity, or functionality. Intuitively, a granule is also called a clump [70]. The term
calculuscomes from G.W. v. Leibniz, who thought of a calculus as an instrument of
discovery inasmuch as it provides a system for combining, describing, measuring,
reasoning about, and performing operations on objects of interest such as terms in a
logical formula in a logical calculus or infinitesimally small quantities in differen-
tial calculus [3, 13]. The calculus of classes described by Alfred Tarski [67] shares
some of the features found in a calculus of granules. The termclassis synonymous
with set, an assemblage of distinct entities, either individually specified or satisfying
certain specified conditions [6] (e.g., equivalence class of y consisting of all objects
equivalent toy). In measure theory, a class is a set of sets [8]. The element of a class
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is a subset. It is Georg Cantor’s description of how one constructs a set that comes
closest to what we have in mind when we speak of a granulation,that is, a set is
the result of collecting together certain well-determinedobjects of our perception or
our thinking into a single whole (the objects are called elements of a set) [7]. In a
calculus of classes, the kinds of classes (e.g., empty class, universal class), relations
between classes (e.g., inclusion, overlap, identify), andoperations on classes (�,
�

, -) are specified. Similarly, a calculus of granules distinguishes among kinds of
granules (e.g., elementary granules, set-, concept-, and granule-approximations), re-
lations among granules (e.g., inclusion, overlap, closeness), and operations on gran-
ules (e.g., granule approximation, decomposition). It should be observed that in the
case of information granules, we cannot use crisp equality in comparing granules.
Instead, we are forced to deal with similarity, closeness, and being a part of a whole
to a degree, concepts in considering relations between granules.

Calculus of granules includes a number of features not foundin the calculus of
classes, namely, a system of agents, communication of granules of knowledge be-
tween agents, and the construction of granules by agents. Tosome extent, the new
calculus of granules is similar to the agent-based, value-passing calculus of commu-
nicating systems proposed by Robin Milner [17, 18]. In Milner’s system, an agent
is an independent process possessing input and output ports. Agents communicate
via channels connecting the output (input) port of one agentwith the input (output)
port of another agent. Milner’s calculus is defined by a tuple

�
A�L�Act�X �V�K �J�ε�

whereA is a set of names;L, a set of labels;Act, a set of actions;X � a set of agent
variables;V� a set of values;K � a set of agent constants;J� an indexing set; andε
is a set of agent expressions. This calculus includes a grammar for formulating ex-
pressions. Even though adaptivity, granules of knowledge,information granulation,
parameterized approximations, and hierarchy of relationsof being a part, to a de-
gree (fundamental features of the calculus of granules), are not found in Milner’s
calculus, it is possible to enrich Milner’s system to obtaina variant of the calculus
of granules.

The fundamental feature of a granulation system is the exchange of information
granules of knowledge between agents by transfer functionsinduced by rough mere-
ological connectives extracted from information systems.A calculus of granules has
been introduced to provide a foundation for the design of information granulation
systems. The keystone in such systems is the granularity of knowledge for approx-
imate reasoning by agents [42]. Approximate reasoning on information granules is
not only caused by inexactness of information that we have but also by the fact that
we can gain efficiency in reasoning if it is enough to deliver approximate solutions,
sufficiently close to ideal solutions. An agent is modeled asa computing unit that
receives input from its sensors and from other agents, acquires knowledge by dis-
covering (constructing) information granules and by granule approximation, learns
(improves its skill in acquiring knowledge), and adapts (adjusts in granulation pa-
rameters of predicates in response to changing, for example, sensor measurements
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and feedback from other agents). For two finite setsX �Y �U (universe of an infor-
mation system), we define standard rough inclusion using

µ
�
X �Y� � card

�
X
�

Y�
card

�
X� if X is nonempty, andµ

�
X �Y��1� otherwise. (1)

A simple granule of knowledge of type
�
µ�B�C�tr�tr �� has the form

�
α�α�� whereµ

is the standard rough inclusion,B andC are subsets ofA (attributes, that is, sensors,
of an information system), andtr�tr � � �0�1� are thresholds on functions defined
with respect toµ such thatµ

��α�B � �α��C� � tr andµ
��α��C � �α�B� � tr �. For exam-

ple, we assert thatGr
�
µ�B�C�tr�tr � �α�α�� is true when

�
α�α�� is a

�
µ�B�C�tr�tr ��

granule of knowledge. There are several sources of adaptivity in the scheme defined
by a calculus of granules. First, there is the possibility that changes can be made
in parametersµ�B�C� tr� tr � in the granulation predicateGr

�
µ�B�C�tr�tr � �α�α�� for

any agentag�Ag (set of agents). Second, new granules can be constructed by any
agent in response to a changing environment. Third, new rough inclusion measures
can be instituted by an agent by changing, for example, the parameters in at-norm
and ans-norm used in definingµ. The possibility that any agent can make one or
more of these changes paves the way toward an adaptive calculus of granules [42].
A recently formulated rough-fuzzy neural network has partially realized this idea
with an adaptive threshold relative to a set of real-value attributes without employ-
ing rough inclusion [19].

Each agent (neuron) distills its knowledge from granulated(fused) sensor measure-
ments, from granulated signals from other agents, and from approximate reasoning
in classifying its acquired granules. An agent communicates its knowledge through
channels connected to other agents. An agent (neuron) learns by adjusting accessi-
ble parameters in response to feedback from other agents. Let Ag be a nonempty
set of agents. In describing the elements of a calculus of granules, we sometimes
write U instead ofU

�
ag�� for example, whereU [andU

�
ag�] denotes a nonempty

set of granules (universe) known to agentag �Ag. Similarly, when it is clear from
the context, we sometimes writeInv, St, A, M, L, link, O, AP O, Unc rel, Unc rel,
H, Dec rule, lab as a shorthand forInv

�
ag�, St

�
ag�, A

�
ag�, M

�
ag�, L

�
ag�, Link

�
ag�,

O
�
ag�, AP O

�
ag�, Unc rel

�
ag�, Unc rule

�
ag�, H

�
ag�, Dec rule

�
ag�, respectively.

The calculus of granules establishes a scheme for a distributed system of agents that
is characterized by the following tuple:

Scheme�
�
U �Inv�St�Ag�Lrm�A�M �L�link � (2)

O�AP O�Unc rel �Unc rel �H �Dec rule�lab� �
whereU denotes a nonempty set of granules (universe) known to agentag �Ag�
Inv denotes an inventory of elementary objects available toag�St a set of standard
objects forag� Ag a set of agents,Lrm a rough mereological logic [12],A an in-
formation system ofag� M a pre-model ofLrm for ag� L a set of unary predicates
of ag� link a string denoting a team of agents communicating objects (input) to an
agent for granulation,O a set of operations of an agent,Unc rel a set of uncertainty
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relations,H a strategy for producing uncertainty rules from uncertainty relations,
Dec rule a set of granule decomposition rules, andlab a set of labels (one for each
agentag �Ag). The calculus of granules provides a computational framework for
designing neural networks in the context of a rough set approach to approximate
reasoning and knowledge discovery. The original idea of an open-world model for
inductive learning by agents [26] has been enriched by considering a distributed sys-
tem of agents that stimulate each other by communicating granules of knowledge
gleaned from granules received from other agents.

An approximate rough mereology with its own logicLrm (syntax, grammar for
its formulas, axioms, and semantics of its models) providesa formal treatment of
being a part in a degree. This paves the way toward a study of granule inclusion de-
gree testing and measures of the closeness of granules implemented by cooperating
agents [44]. The calculus of granules is considered adaptive to the extent that the
construction of information granules by a distributed system of interacting agents
will vary in response to variations in the approximate reasoning by agents about
their input signals (input granules). Agents usually live and learn inductively in an
open system like that described by Pawlak [26]. Let

�
Inv�Ag� denote a distributed

system of agents whereInv denotes an inventory of elementary objects andAg is a
set of intelligent computing units (agents). Letag �Ag be an agent endowed with
tools for reasoning and communicating with other agents about objects within its
scope. These tools are defined by components of the agent label (denotedlab) such
that

lab
�
ag�� �A�

ag��M �
ag��L�ag��Link

�
ag��St

�
ag��O�

ag�� (3)

AP O
�
ag��Unc rel

�
ag��Unc rule

�
ag��H �

ag��Dec rule
�
ag�� �

where
� A

�
ag� � �U �

ag��A�ag�� is an information system relative to agentag� where
the universeU

�
ag� is a finite, nonempty set of granules containing elements of

the form
�
α� �α�� such thatα is a conjunction of descriptors and�α� denotes its

meaning inA
�
ag� [26]. It is also possible that the objects ofU

�
ag� are complex

granules.� M
�
ag� � �U �

ag�� �0�1��µ0
�
ag�� is a premodel ofLrm with a rough inclusion

µ0
�
ag� on the universeU

�
ag��The notationLrm denotes a rough mereological

logic [42].� L
�
ag� is a set of unary predicates (properties of objects) in a predicate calcu-

lus interpreted in the setU
�
ag�� Further, formulas ofL

�
ag� are constructed as

conditional formulas of logicsLB whereB
�

U
�
ag��� Link

�
ag� is a collection of strings of the formag1ag2� � �agkag denoting a team

of agents such thatag1ag2� � �agk are the children of agentag in the sense thatag
can assemble complex objects (constructs) from simpler objects sent by agents
ag1� ag2�� � � �agk [19].� St
�
ag�� �st

�
ag�1� � � � �st

�
ag�n��U

�
ag� is the set of standard objects atag�� O

�
ag� � �o�o : U

�
ag1� ��

ag2� ��� � �U
�
agk��U

�
ag� is operation at ag��
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� AP O
�
ag� is a collection of pairs of the form

�
o
�
ag�t ���AS1�o

�
ag��in�� � � � �ASk �o

�
ag��in��AS�o�ag��out����

whereo
�
ag�t � �O

�
ag��k is the arity ofo

�
ag�� t �ag1�ag2� � � � �agk �Link

�
ag��

ASi �o
�
ag�t ��in� is a parameterized approximation space corresponding to the i-

th argument ofo
�
ag�t � andAS�o�ag�t ��out� is a parameterized approximation

space for the output ofo
�
ag�t �� The meaning ofo

�
ag�t � is that an agent per-

forms an operation enabling the agent to assemble from objects x1 �U
�
ag1�,

x2 �U
�
ag2�, � � � � xk �U

�
agk� the objectz �U

�
ag� that is an approximation

defined byAS�o�ag�t ��out� of o
�
ag�t ��y1�y2 � � � � �yk� �U

�
ag� whereyi is the

approximation ofxi defined byASi �o
�
ag�t ��in� �One may choose here either a

lower or an upper approximation. For more details, refer to Chap. 3.� Unc rel
�
ag� is a set of uncertainty relationsunc reli of type

�oi
�
ag�t� �ρi

�
ag� �ag1� � � � �agk �ag� (4)

µo
�
ag1� � ����µo

�
agk� �µo

�
ag� �

st
�
ag1�i � ����st

�
agk�i �st

�
ag�i �

of agentagwhereag1, ag2,� � � �agk �Link
�
ag�� oi

�
ag�t � �O

�
ag� andρi is such

that ρi �
�
x1 �ε1�� � � � � �xi �εk�� �x�ε�� holds forx �U

�
ag�, x1 �U

�
ag1�, � � �, xk �

U
�
agk�� ε�ε1 � � � � �εk � �0�1� iff µo �x j �st

�
agj �i � � ε j � j � 1� � � � �k for the collec-

tion of standardsst
�
ag1�i � � � � �st

�
agk�i �st

�
ag�i such thatoi

�
ag�t ��st

�
ag1�i � � � � �

st
�
agk�i � � st

�
ag�i . Values of the operationo are computed in three stages.

First, approximations of input objects are constructed. Next, an operation is
performed. Finally, the approximation of the result is constructed. A relation
unc reli provides a global description of this process. In practice,unc reli is
composed of analogous relations corresponding to the threestages. The rela-
tion unc reli depends on parameters of approximation spaces. Hence, to obtain
satisfactory decomposition (similarly, uncertainty, andso on) rules, it is neces-
sary to search for satisfactory parameters of approximation spaces. This search
is analogous to weight tuning in traditional neural computations.� Unc rule

�
ag� is a set of uncertainty rulesunc rulei of type,

if oi
�
ag�t ��st

�
ag1�i � � � � �st

�
agk�i � � st

�
ag�i and (5)

x1 �U
�
ag1�� � � � �xk �U

�
agk� satisfy the conditions

µo �x j �st
�
agj �i � � ε

�
agi � for i �1� ����k�

then µo �oi
�
ag�t ��x1� ����xk��st

�
ag�i � � fi �ε

�
ag1�� ����ε�agk���

whereag1, ag2� � � � �agk �Link
�
ag� and fi : �0�1�k � �0�1� is a so-called rough

mereological connective. Uncertainty rules provide functional operators (ap-
proximate mereological connectives) for propagating uncertainty measure va-
lues from the children of an agent to the agent. The application of uncertainty
rules is in negotiation processes where they inform agents about plausible un-
certainty bounds.
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� H
�
ag� is a strategy that produces uncertainty rules from uncertainty relations.� Dec rule

�
ag� is a set of decomposition rules,

�Φ �
ag1� � ����Φ �

agk� �Φ �
ag�� � (6)

of type �oi
�
ag�t� �ag1� ����agk�ag� of agent ag, where

Φ
�
ag1� �L

�
ag1� � ����Φ �

agk� �L
�
agk� �Φ �

ag� �L
�
ag�� (7)

ag1�ag2 � � � � �agk �Link
�
ag��and there exists a collection of standardsst

�
ag1�i ,

� � �, st
�
agk�i �st

�
ag�i such thatoi

�
ag�t ��st

�
ag1�i � � � � �st

�
agk�i � �st

�
ag�i and these

standards satisfyΦ
�
ag1�� � � � �Φ�

agk��Φ�
ag�� respectively. Decomposition rules

are decomposition schemes, that is, such rules describe thestandardst
�
ag�i and

standardsst
�
ag1�i � � � � �st

�
agk�i from which the standardst

�
ag�i is assembled

underoi relative to predicates that these standards satisfy.

It has been pointed out that there is an analogy between calculi of granules in dis-
tributed systems and rough-neurocomputing [44]:

1. An agentag with input and output ports creating communication links with
other agents provides a model for a neuronη (analogously, agentag) with inputs
supplied by neuronsη1 � � � � � ηk (analogously, agentsag1� � � � � agk), responds
with output byη, andη is designed with a parameterized family of activation
functions represented as rough connectives. In effect, a neuron resembles the
model of an agent proposed by Milner [17].

2. Values of rough inclusions are analogous to weights in traditional neural net-
works.

3. Learning in a system governed by an adaptive calculus of granules is in the
form of back propagation where incoming signals are assigned a proper scheme
(granule construction) and a proper set of weights in negotiation and coopera-
tion with other neurons.

2.2 Granules in Distributed Systems

In this section, the fulfillment of an ontology of approximate reasoning stems from
the consideration of granular computing in the context of parameterized approxi-
mation spaces as a realization of an adaptive granule calculus. This realization is
made possible by introducing a parameterized approximation space in designing a
reasoning system for an agent. A step toward the realizationof an adaptive gran-
ule calculus in a rough-neurocomputing scheme is describedin this section and is
based on [44]. In a scheme for information granule construction in a distributed sys-
tem of cooperating agents, weights are defined by approximation spaces. In effect,
each agent (neuron) in such a scheme controls a local parameterized approximation
space.
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Let us now consider a definition of a parameterized approximation space. A pa-
rameterized approximation space is a system

AS#�
�
�$ �

�
U �I#�R� �ν$�� (8)

where #,*, $ denote vectors of parameters,U is a nonempty set of objects, and
� I# : U �℘

�
U � is anuncertainty functionwhere℘

�
U � denotes the power set of

U ; I#
�
x� is called theneighborhoodof x �U ;� R� �℘
�
U � is a family ofparameterized patterns;� ν$ :℘

�
U � �℘

�
U �� �0�1� denotesrough inclusion.

The uncertainty function defines for every objectx in U a set of similarly described
objects. A constructive definition of an uncertainty function can be based on the
assumption that some metrics (distances) are given on attribute values. The family
R� describes a set of (parameterized) patterns (e.g., representing, for fixed values of
parameters, the sets described by the left-hand sides of decision rules). A setX �U
is definable onAS#�

�
�$ if it is a union of some patterns. The rough inclusion func-

tion ν$ defines the value of inclusion between two subsets ofU � In particular, for
any neighborhood, its inclusion degree in a given pattern can be computed. More-
over, for classifiers, the degree of inclusion of patterns indecision classes can be
estimated. The neighborhoodI#

�
x� can usually be defined as a collection of objects

close tox. Also note that for some problems, it is convenient to define an uncertainty
set function of the formI# :℘

�
U ��℘

�
U �. This form of uncertainty function works

well in signal analysis, where we want to consider a domain over sets of sample
signal values.

For a parameterized approximation spaceAS#�
�
�$ and any subsetX �U , the lo-

wer and upper approximations ofX in U based only on an uncertainty function and
rough inclusion are defined as follows:

LOW
�
AS#�

�
�$�X� � �x �U �ν$

�
I#
�
x� �X� �1� [lower approximation] � (9)

UPP
�
AS#�

�
�$�X�� �x �U �ν$

�
I#
�
x� �X� �0� [upper approximation]. (10)

However, if one would like to consider the approximation of concepts in an ex-
tensionU � of U by taking patterns and their inclusion degrees in the concepts, the
definition of concept approximation should be changed. The reader can find more
details on concept approximations in Chaps. 3, 6, and 25.

Sets of objects that are collections of objects defined by an uncertainty function
or patterns from a data table are examples of information granules. A parameterized
approximation space can be treated as an analogy to a neural network weight (see
Fig. 1). In Fig. 1,w1, � � � � wn, Σ, f denote the weights, aggregation operator, and
activation function of a classical neuron, respectively, whereasAS1

�
P�� � � � �ASk

�
P�

denote parameterized approximations spaces where agents process input granules
G1 � � � � � Gk andO denotes a (parameterized) operation from a given set of oper-
ations that produce the output of a granular network. The parameters inP of an
approximation space should be learned to induce the relevant information granules.
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Fig. 1. Comparison of classical and granular network architectures

3 Rough Neurons

The termrough neuronwas introduced in 1996 by Lingras [15]. In its original form,
a rough neuron was defined relative to upper and lower bounds,and inputs were
assessed relative to boundary values. Hence, this form of neuron might also be called
a boundary value neuron. This form of rough neuron has been used in predicting
urban high-traffic volumes [4]. More recent work considers rough-neural networks
(RNNs) with neurons that construct rough sets and output thedegree of accuracy of
an approximation [35, 36]. This has led to the introduction of approximation neurons
[36] and their application in classifying electrical powersystem faults [10], signal
analysis [37], and in assessing software quality [29]. An information granulation
model of a rough neuron was introduced by Skowron and Stepaniuk in the late
1990s. This model of a rough neuron is inspired by the notion of a cooperating
agent (neuron) that constructs granules; perceives by measuring values of availa-
ble attributes, granule inclusion, granule closeness, andby granule approximation;
learns by adjusting parameters in its local parameter space; and shares its knowledge
with other agents (neurons). A rough-fuzzy multilayer perceptron (MLP) useful in
knowledge encoding and classification was introduced in 1998 by Banerjee, Mitra,
and Pal [2]. The study of various forms of rough neurons is part of a growing number
of papers on neural networks based on rough sets. Transducers discussed in Chap. 8
transforming rough set arguments into rough sets can also beconsidered as rough
neurons.
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3.1 Set Approximation

Rough set theory offers a systematic approach to set approximation [26]. To begin,
let S�

�
U �A� be an information system whereU is a nonempty, finite set of objects

andA is a nonempty, finite set of attributes, wherea : U �Va for everya �A. For
eachB �A, there is associated an equivalence relationIndA

�
B� such that

IndA
�
B� � ��x�x�� �U2 ��a �B�a�x��a

�
x���� (11)

If (x, x�� � IndA
�
B�, we say that objectsx andx� are indiscernible from each ot-

her relative to attributes fromB. The symbol [x]B denotes the equivalence class
of IndA

�
B� defined byx� Further, partition symbol U/IndA

�
B� denotes the family

of all equivalence classes of relation IndA
�
B� on U. ForX �U , the setX can be

approximated only from information contained inB by constructing aB-lower and
B-upper approximation denoted byB�X andB̄X, respectively, where

B�X � �x��x�B �X� andB̄X � �x��x�B�X �� /0� � (12)

3.2 Rough Membership Set Function

In this section, a set function form of the traditional roughmembership function
introduced in [54] is applied. LetS = (U , A� be an information system,B � A,
and let [u]B be an equivalence class of an objectu �U of IndA

�
B�. A set function

µB
u :℘

�
U �� [0, 1] defined by (13)

µB
u
�
X� � card

�
X
� �u�B�

card
��u�B�

(13)

for anyX �℘
�
Y�, u �U , is called arough membership function.

A rough membership function provides a classification measure inasmuch as it tests
the degree of overlap between the setX and the equivalence class�u�B. The form
of rough membership function presented above is slightly different from the clas-
sical definition [27], where the argument of the rough membership function is an
objectu and the setX is fixed. For example, letXBapprox � �BX�BX� denote a set
approximation. Then, we compute the degree of overlap betweenXBapprox and �u�B
by

µB
u
�
XBapprox��

card
��u�B�XBapprox�
card

��u�B� � (14)

In the sequel, we also writeµu�B
�
XBapprox� instead ofµB

u
�
XBapprox��
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3.3 Decision Rules

In deriving decision system rules, the discernibility matrix and discernibility func-
tion are essential. Given an information systemS�

�
U �A� with n objects, then �n

matrix
�
ci j �, called the discernibility matrix ofS [denotedM

�
S�], is defined as

ci j � �a �A�a�xi � ��a
�
x j ��� for i � j �1� � � � �n� (15)

A discernibility function fM �S� for the systemS is a Boolean function ofm Boolean
variablesa

�
1� � � � �a

�
m corresponding to attributesa1 � � � � �am, respectively, and defined

by

fM �S� �a�1 � � � � �a�m� � ��c�i j �1 � j � i �n�ci j �� /0�wherec
�
i j � �a� �a �ci j �� (16)

Precise conditions for decision rules can be extracted froma discernibility matrix as
in [43, 47]. For the information systemS�

�
U �A�� let B �A and let℘

�
Va� denote

the power set ofVa, whereVa is the value set ofa� For everyδ �A�B� a decision
functiondB

δ : U �℘
�
Vδ� is defined in (17) as in [56]:

dB
δ
�
u�� �v �Vδ � �u� �U �

�
u� �u� � IndB andδ

�
u�� � v� � (17)

In other words,dB
δ
�
u� is the set of all elements of the decision columnδ of S such

that the corresponding object is a member of the same equivalence class as argu-
mentu� The next step is to determine a decision rule with a minimal number of
descriptors on the left-hand side. Pairs

�
a�v��wherea �A�v �V, are calleddescrip-

tors. A decision rule over the set of attributesA and valuesV is an expression of the
following form:

ai1

�
ui � � vi1 � � � ��ai j

�
ui �� vi j � � � ��air

�
ui � � vir �

S
d
�
ui � � v� (18)

whereui �U � vi j �Vai j � v �Vd, j �1� � � � �r andr �card
�
A�. The fact that a rule is

true is indicated by writing it in the following form:

�
ai1 � vi1�� � � �� �

air � vir � �
S

�
ap � vp�� (19)

In practice also are important rules that are true inS to the degree in which the set
defined inSby the left-hand side of the rule is included in the set definedin Sby the
right-hand side of the rule. The left- and right-hand sides of rules are information
granules inS� Then the degree mentioned above can be interpreted as the degree
of inclusion of such information granules. The decision rules can also be treated as
information granules (see Chap. 3).

Let RED
�
S� be a reduct set generated from a decision systemS� e.g., a set of lo-

cal reducts with respect to objects [12].1 For decision systemS� the set of decision

1 Note that there are many different kinds of reducts and methods of selection of relevant
reducts used in constructing data description models (see Chap. 25).



2. Rough-Neuro Computing: An Introduction 27

rules constructed with respect to a reductR �RED
�
S� is denoted byOPT

�
S�R��

Then the setOPT
�
S� of all decision rules derivable from reducts inRED

�
S� is the

following set:
OPT

�
S�� ��OPT

�
S�R��R�RED

�
S��� (20)

3.4 Interval-Based Rough Neuron

An interval-based rough neuronwas introduced in 1996 [15]. A brief introduction to
this form of rough neuron is given in this section. Rough neurons are defined in the
context of rough patterns. Objects such as a fault signal or daily weather can be de-
scribed by a finite set of features (e.g., amplitude, type of waveform, high-frequency
component, rainfall, temperature) characterizing each object. The description of an
object is ann-dimensional vector, wheren is the number of features used to charac-
terize an object. A pattern is a class of objects based on the values of some features
of objects belonging to the class.

Let x be a feature variable in the description of an object. Further, let x�x represent
upper and lower bounds ofx� In a rough pattern, the value of each feature variable
x is specified byx�x (called rough values). Rough values are useful in representing
an interval or set of values for a feature, where only the upper and lower bounds
are considered relevant in a computation. This form of roughneuron can be used to
process intervals in a neural network.

Let r�r �r denote a rough neuron, lower neuron, and upper neuron, respectively. A
rough neuron is a pair

�
r �r �with three types of connections: i/o connections tor, i/o

connections tor, and connections betweenr andr � In effect, a rough neuron stores
the upper and lower bounds of input values for a feature and uses these bounds in
its computations. Letini, outj , wi j denote the input to neuroni � the output from neu-
ron j � and the strength of the connection between neuronsi and j � respectively. The
input to an upper, lower, or conventional neuroni is calculated as a weighted sum as

ini �
n

∑
j�1

wi j outj (neuronj is connected to neuroni�� (21)

Assuming the subscripti � r � we obtain the input to a lower neuron, and fori � r,
we obtain the input to an upper neuron. Lett be a transfer function used to evaluate
the input to an upper (lower) neuron. Then the output of an upper (lower) neuron is
computed as in (22) and (23), respectively:

outr �max�t �inr � �t �inr �� ; (22)

outr �min �t �inr � �t �inr �� � (23)

The output of a rough neuron will be computed from

rough neuronout put� outr �outr
average

�
outr �outr � � (24)
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The inputs to rough neurons considered in [15] are related todeviations in measure-
ments of some attribute value. One can consider another casewhen deviations of
a real function defined, e.g., on the lower approximation of agiven setX, are used
to define inputs to neurons. Another possibility to consideris deviations of rough
membership function values on elements of a tolerance class(see Sect. 3.5).

3.5 Approximation Neurons

This section considers the design of rough neural networks based on set approxi-
mations and rough membership functions, and hence, this form of network is called
an approximation neuron(AN). The approximation neuron was introduced in [9],
and elaborated in [35, 36]. Preliminary computations in an AN are carried out with
a layer of approximation neurons, which construct rough sets and where the output
of each approximation neuron is computed with a rough membership function. This
section considers ANs constructed with one type of rough neuron: the approxima-
tion neuron. LetB�F�FBapprox, �f �B denote a set of attributes, a finite set of neuron in-
puts (this is an archival set representing past stimuli, a form of memory accessible to
a neuron), a set approximation, and an equivalence class containing measurements
derived from known objects, respectively. The basic computation steps performed
by an approximation neuron are illustrated in Fig. 2.

Fig. 2. Approximation neuron

The approximation neuron measures the degree of overlap of aset �f �B andFBapprox�
Let us consider a more general case when instead of an indiscernibility class �f �B,
an input is defined by a more general information granule (seeChap. 3), i.e.,τ-
tolerance class of�f �B, (a family ��f ��B : f τ f ��). The output of a neuron is defined
by two numbers representing the deviation of the rough membership function on
elements of the tolerance class. Other forms of rough neurons are described in [37].

3.6 Decider Neuron

The notion of adecider neuronwas introduced in [35, 36] and applied in [37].
A decider neuron implements a collection of decision rules by (i) constructing a
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condition vectorcexp from its inputs, which are rough membership function values,
(ii) discovering the ruleci ��di with a condition vectorci that most closely matches
an input condition vectorcexp, and (iii) outputsAND

�
1�ei, di � wheredi � �0�1��

and relative errorei �
�
cexp�ci

���
ci
�� �0�1� where

�
�
�

denotes the vector length
function. Whenei � 0� thenyrule �AND

�
1�ei, di � � di , and the classification is

successful. Ifei �1, thenyrule �AND
�
1�ei, di ��0 indicates the relative error in an

unsuccessful classification. A flow graph showing the basic computations performed
by a decider neuron is given in Fig. 3.

Fig. 3. Flow graph for decider neuron

The setrm f � �µa
F

�
f ��a�B consists of approximation neuron measurements in re-

sponse to the stimulus provided a new objectf requiring classification. The ele-
ments of the setrm f are used by a decider neuron to construct an experimental
condition vectorcexp. A second input to a decider neuron is the setR� �ci ��di��
The elements of the setR are rules that have been derived from a decision table us-
ing rough set theory. LetselectRuledenote a process that implements an algorithm
to identify a condition vector in one of the rules of R, that most closely matchescexp.

Let us observe that one of the input of decider neuron is an information granule
represented by a set of decision rules. The rough neuron considered is used to mea-
sure the degree of closeness of objectf to an information granule represented by
the set of decision rules.

It is worthwhile mentioning that the case considered is verysimple. Instead of a
rough membership function, computed relative to attributes fromB�one should con-
sider a relevant familyC1 � � � � �Ck of subsets ofB� For classifiers based on decision
rules, such subsets are defined by reducts local with respectto objects [12].2

3.7 Architecture of Approximation Neural Networks

Approximation neural networks (ANN) are well suited to solving classification
problems where nuances in a feature space over time can be gleaned from rough ap-
proximations. This form of rough neural computation has been successfully applied

2 In the more general case, one can consider, instead ofrmf inclusion, degrees of input infor-
mation granules into the information granules representing relevant patterns for decision
classes (see Chaps. 3 and 25).
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in two applications: classifying the waveforms of electrical power system faults ([9],
[10, 37] and in determining the number of changes required ina software system
based on quality measurements [31]. In this section, a briefsummary of the results
of the software quality study are given.

Sample computations with a set of 11 approximation neurons are given in Table 1.
The first 11 columns of Table 1 are rough membership function outputs, and the last
column is a target value for the aggregate of the rmf values. The target column in
Table 1 serves as a decision column.

Table 1. Sample approximation neuron output values

µa1
u �X� µa2

u �X� µa3
u �X� µa4

u �X� µa5
u �X� µa6

u �X� µa7
u �X� µa8

u �X� µa9
u �X� µa10

u �X� µa11
u �X� Target

1 1 1 1 1 0.9 0.9 0.72 0.47 0.66 1 1

1 1 1 1 1 0.9 0.9 0.72 0.4 0.66 1 1

. . .

1 1 1 1 1 0.9 0.927 0.72 0.47 0.66 1 1

0.68 0.89 0.74 0.78 0 0 0 0 0.57 0 0.230

During calibration of the ANN, adjustments are made to the weights (strengths of
connections) associated with approximation neurons relative to a probabilistic sum
of the rmf values and target value. For each test input, the output of an ANN indi-
cates the probability that the test input belongs to the set of measurements associated
with the ith life cycle product attribute. Let∑ denote an output neuron (see Fig. 4)
that computes the sum of all weighted outputs from the approximation neurons in
the first layer. A software metric (e.g., reusability, complexity, maintainability [6])
is used to define each life cycle product quality attribute.

The application of the rough mereological approach in software quality measure-
ment is described in [38]. The basic idea is to characterize the global quality assess-
ment of a given software product using a vector of rough mereological distances
(cf. rows of Table 1) of quality measurements relative to a chosen set of industry
standards. Sample calibrations of a rough membership function neural network are
shown in Figs. 5 and 6. In the case considered, constructed information granules
are degrees of inclusion of patterns in decision classes. They are computed as linear
combinations of rough membership degrees of a given inputu in the setX �

3.8 Architecture of Approximation-Decider Neural Network

The output of the approximation neural network in Fig. 4 serves as a module in tes-
ting the quality measurements of a particular life cycle product relative to a particu-
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Fig. 4. Approximation neural network
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Fig. 5. Sample calibration of approximation neural network

lar number of changes required to correct product quality deficiencies. For the study
of the quality of life cycle products, 17 such approximationneural networks were
constructed. The outputs of thek (k = 17) ANNs form a condition vector of the form
[e1 e2 � � �ek], where ei denotes an experimental approximation neuron output (rough
membership function) value. During training, a test set of condition vectors and
corresponding decisions (specified number of changes decided on for each condition
vector) was constructed. A set of decision rules is then derived and incorporated in
a neural network output neuron that is called a decider neuron (see Fig. 7). During
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Fig. 6. Sample calibration of approximation neural network (cd.)

testing, each test condition vector [t1 � � �tk] is matched with the closest training set
condition vector in the set of rules in the decider neuron. The output of the composite
rough neural network is the decision of a selected rule in thedecider neuron (see Fig.
8). The design of a neural network with a layer of rule-based neurons has been used
in a feed-forward multilayer neural network [64].
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Fig. 7. Training network
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Fig. 8. Testing network

For the experiment described in this section, 17 approximation neural network mo-
dules (a total of 187 approximation neurons with a structurelike that in Fig. 4) were
incorporated into the design of a composite neural network with a single neuron
in the output layer, namely, a decider neuron. After calibration of the subnetworks
(ANN1� � � �, ANNk), formation of a decision table, and derivation of decisionrules,
the result is the training network in Fig. 7. During testing,the network in Fig. 8 is
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used to find a rule with a condition vector with the best match to a rule residing
in the decider neuron. As a result, we obtain a basis for making an approximate
decision about the number of changes required for the particular life cycle product
being evaluated. The results of sample training sessions are shown in Fig. 9.
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Fig. 9. RNN performance

4 Hybrid Neural Networks

A number of hybrid neural networks with architectural designs based on rough set
theory and more traditional neural structures have been proposed:rough-fuzzy MLP
[19], evolutionary rough-fuzzy MLP[24], interval-based rough-fuzzy networks[15],
andapproximation rough-fuzzy networks[37]. It should also be mentioned that it
is common to use rough set theory as the basis for preprocessing inputs to a neural
network (see Chap. 25). In this section, two recent forms of hybrid networks are
briefly described: a rough-fuzzy multilayer perceptron neural network [19] and a
rough-fuzzy approximation neural network [29]. In rough-fuzzy neural networks,
some patterns are extracted using rough set methods. Next, such patterns can be
fused using fuzzy logic rather than classical propositional connectives.

4.1 Rough-Fuzzy MLP

The rough-fuzzy multilayer perceptron neural network introduced in [19], was de-
veloped for pattern classification. This form of MLP combines both rough sets and
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fuzzy sets with neural networks for building an efficient connectionist system. In this
hybridization, fuzzy sets help in handling linguistic input information and ambiguity
in output decision, whereas rough sets extract domain knowledge for determining
network parameters.

4.2 Architecture of Rough-Fuzzy MLP Network

The first step in designing a rough-fuzzy MLP is to establish abasis for working
with real-valued attribute tables of fuzzy membership values. The traditional model
of a discernibility matrix given in (15) is replaced by

ci j � �a �B� ��a
�
xi ��a

�
x j � ���Th� (25)

for i � j � 1� ����nk, whereTh is an adaptive threshold. Leta1�a2 correspond to two
membership functions (attributes) wherea2 is steeper compared toa1 (see Fig. 10).
It is observed thatr1 � r2 � This results in an implicit adaptivity ofTh while com-
putingci j in the discernibility matrix directly from the real-valuedattributes. Herein
lies the novelty of the proposed method. Moreover, this typeof thresholding also en-
ables the discernibility matrix to contain all representative points/clusters present in
a class. This is particularly useful in modeling multimodalclass distributions. Rough
set methods are used to find patterns relevant to decision classes. While designing

Fig. 10. Illustration of adaptive thresholding of membership functions

the initial structure of the rough-fuzzy MLP, the union of the rules ofl classes is
considered. The input layer consists of 3n attribute values (it is assumed that each
attribute can have three fuzzy values:low, medium, high) whereas the output layer
is represented byl classes. The hidden layer nodes model the first level (innermost)
operator in the antecedent part of a rule, which can be eithera conjunct or a dis-
junct. The output layer nodes model the outer level operands, which can again be
either a conjunct or a disjunct. For each inner level operator, corresponding to one
output class (one dependency rule), one hidden node is dedicated. Only those input
attributes that appear in this conjunct/disjunct are connected to the appropriate hid-
den node, which in turn is connected to the corresponding output node. Each outer
level operator is modeled at the output layer by joining the corresponding hidden
nodes. Note that a single attribute (involving no inner level operators) is directly
connected to the appropriate output node via a hidden node, to maintain uniformity
in rule mapping.
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Modular Training A method of learning the parameters of rough-fuzzy MLP has
recently been described [24] using the modular concept thatis based on the divide
and conquer strategy. This provides accelerated training and a compact network
suitable for generating a minimum number of classification rules with high certainty
values. A new concept of a variable genetic mutation operator is introduced for
preserving the localized structure of the constitutive knowledge-based subnetworks
while they are integrated and evolved.

4.3 Rough-Fuzzy Approximation Neural Network

A rough-fuzzy approximation neural network gains its name from the fact that it
contains neurons designed using rough set theory connectedto various forms of
neurons designed using fuzzy set theory (see, e.g., Fig. 11).

4.4 Architecture of a Sample Rough-Fuzzy Neural Network

The sample rough-fuzzy neural network described in this section consists of four
layers (see Fig. 11). The first layer of the network in Fig. 11 contains approximation
neurons connected to very basic fuzzy neurons (layer 2) thatcompute the degree of
membership of rough neuron outputs in various distributions. Layer 2 neurons are
connected to AND neurons (also called logic neurons [29]). Letx be an approxima-
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Fig. 11. Rough-fuzzy neural network

tion neuron output, and letf
�
x� be the degree of membership ofx in a particular

distribution. Then defined parametersr andw denote a cutoff (reference point) and
strength of connection (weight), respectively. Then, we define a fuzzy implication
r � x by

�
r � x� �

�
x
r if x � r
min

�
1� x

r � otherwise�
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Let t (“and” usually interpreted asmin) ands (“or” interpreted as a probabilistic
sumhere) denotet-norm ands-norm operators from fuzzy set theory [29]. An AND
neuron has output z defined as

z�
n
T

i�1
�xi swi � �min �x1sw1 � ����xnswn� �

The model for an AND neuron is specialized relative to fuzzy implication as

z�
n

min
i�1

��r i � f
�
x�i ��wi � �r i � f

�
x�i �wi ��

The output layer of the network in Fig. 11 consists of OR neurons that aggregate
the information gleaned from connections to AND neurons. The model for an OR
neuron is

y �
n
S

i�1
�zi tui � �

�
z1 t u1�s���s�zn t un� �

In the model for an OR neuron,ui denotes the strength of connection between the
OR neuron and theith AND neuron.

4.5 Supervised Learning Approach to Calibration of Rough-Fuzzy Neural
Network

The calibration scheme for rough-fuzzy neuron networks described in this section
employs the standard method for supervised learning. What follows is a brief sum-
mary of the calibration steps:

1. Initialize cutoffr and network strength of connectionsw andu.
2. Introduce a training set.
3. Computey of the output OR neuron.
4. Compute errorQ by comparing network outputs with a target value using (26).

Q � target�y� (26)

5. Letα �0 denote the positive learning rate. Based on the value errorQ in (26),
adjust ther�w� andu parameters using the usual gradient-based optimization
method suggested in (27) and (28):

param
�
new�� param�α

∂Q
∂param� (27)

∂Q
∂param� ∂Q

∂y
∂y

∂param� (28)

A more detailed explanation of how one trains a network containing combinations
of AND and OR nodes is given in [31].



2. Rough-Neuro Computing: An Introduction 37

5 Concluding Remarks

A scheme for designing rough neural networks based on an adaptive calculus of
granules for distributed systems of cooperating agents hasbeen presented. This
scheme is defined in the context of an approximate rough mereology, granule con-
struction and granule approximation algorithms, measuresof granule inclusion and
closeness, and local parameterized approximation spaces.Adaptivity is also a fea-
ture of this scheme, where agents can change local parameters in response to chan-
ging signals from other agents and from the environment. A number of models of
rough neurons have been proposed. Four such models have beenbriefly described in
this chapter: interval-based neurons, approximation neurons, decider neurons, and
rough-fuzzy MLPs. Four rough-neurocomputingarchitectures have also been briefly
considered: approximation neural network, approximation-decider neural network,
rough-fuzzy neural network, and rough-fuzzy MLP network.
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