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1.

Abstract. Some data mining techniques, like discretization of continuous attributes or decision tree
induction, are based on searching for an optimal partition of data with respect to some optimization
criteria. We investigate the problem of searching for optimal binary partition of continuous attribute
domain in case of large data sets stored in relational data bases (RDB). The critical for time com-
plexity of algorithms solving this problem is the number of 1/O database operations necessary to
construct such partitions. In our approach the basic operators are defined by queries on the number
of objects characterized by means of real value intervals of continuous attributes. We assume the
answer time for such queries does not depend on the interval length. The straightforward approach to
the optimal partition selection (with respect to a given measure) requires O (V') basic queries, where
N is the number of preassumed partition parts in the searching space. We show properties of the
basic optimization measures making possible to reduce the size of searching space. Moreover, we
prove that using only O(log N) simple queries, one can construct a partition very close to optimal.

Introduction

Searching algorithms for optimal partitions of real value attributes (features) problem, defined by so
called cuts, has been studied by many authors (see e.g., [1, 2, 3, 4, 18, 10]). The main goal of such
algorithms is to discover cuts which can be used to synthesize decision trees or decision rules of high
quality with respect to some quality measures (e.g., quality of classification of new unseen objects,
quality defined by the decision tree height, support and confidence of decision rules). In general, all those
problems are hard from computational point of view (e.g., it has been shown in [10] that the searching
problem for minimal and consistent set of cuts is NP-hard). Hence, numerous heuristics have been
developed for approximate solutions of these problems. These heuristics are based on some approximate
measures estimating the quality of extracted cuts. In Section 2.1 we present examples of such measures.
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Our approach is based on discernibility measures relevant for rough set approach [17]. All those methods
are very efficient if data sets are stored in operational memory because (after sorting of data) the number
of steps to check distribution of objects in intervals defined by consecutive cuts is of order O(N). We
consider a searching problem for optimal partition of real value attributes assuming that the large data
table is represented in a relational data base. In such case even the linear complexity is not acceptable
because of the time for one step. The critical factor for time complexity of algorithms solving the
discussed problem is the number of simple SQL queries of the form

SELECT COUNT

FROM aTable

WHERE (anAttribute BETWEEN valuel AND value2)
AND (additional condition)

(related to some interval of attribute values) necessary to construct such partitions. We assume the answer
time for such queries does not depend on the interval length (this assumption is satisfied in some existing
data base servers). Using straightforward approach to optimal partition selection (with respect to a given
measure), the number of necessary queries is of order O(N'), where N is the number of preassumed parts
of the searching space partition. We show some properties of considered optimization measures allowing
to reduce the size of searching space. Moreover, we prove that using only O(log V) simple queries, one
can construct a partition very close to optimal. We also extend the searching algorithm for the best cut
presented in [14] by adding the global searching strategy.

2. Basic Notions

An information system [16] is a pair A = (U, A), where U is a non-empty, finite set called the universe
and A is a non-empty finite set of attributes (or features), i.e., a : U — V, for a € A, where Vj is called
the value set (or domain) of a. Elements of U are called objects or records. Two objects =,y € U are
said to be discernible by attributes from A if there exists an attribute ¢ € A such that a(z) # a(y).

In this paper we consider information systems of the form A = (U, A U {dec}) where dec ¢ A is
a distinguished attribute called decision attribute (or decision for short). Usually decision attributes are
used to formulate classification problems. Such information systems are called decision tables. Without
loss of generality we assume Vge. = {1,...,d}. Then the set DECy, = {z € U : dec(z) = k} will be
called the k" decision class of A for 1 < k < d.

Any real value attribute ¢ and any real number ¢ define a partition of universe U into two disjoint
subsets Uy, and Ug, where

Up={z€U:a(z)<c} Ur={z€U:a(z) >c}

If both Uy, and Uy, are not empty, then ¢ is called “a cut on attribute a”. In general, the cut ¢ on attribute
a will be denoted by (a, c) (or, in short, ¢ if a is uniquely determined by the context). We say that ’the
cut ¢ on a discerns a pair of objects z, y” if either a(z) < ¢ < a(y) ora(y) < ¢ < a(x).

Definition 2.1. The set of cuts P = {(a;,, ¢1), (aiy, 2), ., (@i, , c&)} 1S A—consistent iff for any pair
of objects z,y € U if dec(x) # dec(y) and x,y are discernible by attributes from A then there exists
(ai;,cj) € P discerning z and y.
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Definition 2.2. An A-consistent set of cuts P is A—optimal iff card (P) < card (P') for any A-consistent
set of cuts P’.

The discretization problem can be defined as a problem of searching for consistent, and optimal with
respect to some criteria, set of cuts. In [10] it has been shown that the searching problem for discretization
using minimal number of cuts is computationally hard.

Theorem 2.1. (see [10])
The problem of searching for the optimal set of cuts P in a given decision table A is N P-hard.

Since the searching problem for optimal set of cuts is NP-hard (i.e., there is no algorithm solving
this problem in polynomial time, unless P = N P), we can only find a semi-optimal solution using some
approximate algorithms. In the next section we shortly describe some methods often used in machine
learning and data mining.

2.1. The Quality Measures

Developing decision tree induction methods (see [4, 18]) and some supervised discretization methods
(see [1, 3, 10, 9, 11]), we should often solve the following problem:

FOR A GIVEN REAL VALUE ATTRIBUTE a AND SET OF CANDIDATE CUTS {Cl, ...,CN},
FIND A CUT ¢; THAT MOST PROBABLY BELONGS TO THE SET OF OPTIMAL CUTS.

Usually, we use some measure (or quality functions) F : {ci, ...,cx } — R to estimate the quality of
cuts. For a given measure F, the straightforward searching algorithm for the best cut should compute
the values of F for all cuts: F(cy1), .., F(cn ). The cut cgest Optimizing (i.e., maximizing or minimizing)
the value of function F is selected as the result of searching process.

For example, the algorithm for decision tree induction can be described as follows:

1. For agiven set of objects U, select an attribute a and a cut ¢ ges: 0n ¢ of highest quality
among all possible cuts and all attributes;

2. Induce a partition Uy, Ug of U by a and cpest;

3. Recursively apply Step 1 to both sets Ur,, Ug of objects until some stopping condition is
satisfied.

In the following sections we outline the most frequently used measures for decision tree induction
and discretization like x~ Test™, ”Entropy Function” and ’Discernibitity Measure™, respectively. First
we fix some notations. Let us consider an attribute a and a set of candidate cuts C, = {ci, ...,cn} On a.

Definition 2.3. A class distribution of the set of objects X C U is a tuple of integers (x1, ..,z4) where
zr = card(X N DECy) for k € {1,...,d}. If the set of objects X is defined by X = {u € U : p <
a(u) < ¢} for some p, g € R then the class distribution of X is called the class distribution of a in [p; g).

Any cut ¢ € C, splits the domain V,, = (l,,r,) of the attribute a into two intervals: I; =
(la,¢) ;IR = [c,14). For afixed cut ¢ on a we use the following notation:
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Figure 1. The partition of the set of objects U defined by a cut ¢ on attribute a

d — the number of decision classes;

UL,, Ur; —the sets of objects from 4% class in Iy, and Ig;

o U =Up, U...UULd and Ur = Ug, U...UURd;

(L1, -, Lg) and (Ry, .., Ry) — the class distributions in Uy, and Ug (where L; = |Uf,| and R; =
|UR]' |),

o L=YJ Ljand R=Y9 R;

C; = L;j + R, — the number of objects in the ™ class;

n =% C; = L+ R-the total number of objects;

E(UL;) = IXC _ the expected frequency of UL,

n

n

e E(Ug;) = BXCi _the expected frequency of Ug;;

where 5 € {1,...,d}.

2.2. Statistical test methods

Statistical tests allow to check the probabilistic independence between the object partition defined by the
decision attribute and by the cut ¢. The independence degree is estimated by the x 2 test given by

d 2 g 2
_\ I - B(UL)) (Bj — E(U)))
X(e) =) T +y B

=1 =1

Intuitively, if the partition defined by ¢ does not depend on the partition defined by the decision attribute
dec then we have x?(c) = 0. In opposite case if there exists a cut ¢ which properly separates objects
from different decision classes the value of x? test for ¢ is becoming high.

Discretization methods based on x? test are choosing only cuts with large value of this test (and delete
the cuts with small value of x? test). There are different versions of this method (see e.g., ChiMerge [8]
and Chi2 [9]).
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Figure 2. The illustration of entropy measure (left) discernibility measure(right) for the same data. Horizontal
axes are labelled by indexes of consequent cuts; vertical axes are labelled by values of those measures.

2.3. Entropy methods

Many methods based on entropy measure have been developed in the domain of decision tree induction
and discretization. They use class-entropy as a criterion to evaluate the list of the best cuts which together
with the attribute domain induce the desired intervals. The class information entropy of the set of &
objects X with class distribution (z1, ..., z4), where 21 + ... + x4 = k, is defined by

Li

k

M=

Ent(X)=— log —

j=1 K
Let U = Uy, U Ug be a partition of U defined by the cut ¢ on a. Information Gain over the set of
objects U received by the cut ¢ on a is defined by

|UL|
U]

|Ur|
Ent(Ur) + WEnt (UR))

Gain(a,c;U) = Ent(U) — (

For a given feature a, the cut cpes: that maximizes the information gain Gain(a,c;U) over all

possible cuts is selected. The cut maximizing information gain Gain(a, c; U) also minimizes the Entropy
induced by this cut defined by

|UR|
n

UL|
n

Ef(a,c;U) = Ent(Ur) + Ent (Ug)

Many methods based on information entropy theory are reported in, e.g., [1, 5, 2, 18].

2.4. Boolean reasoning methods

If Boolean reasoning is used then cuts are treated as Boolean variables and the searching problem for the
optimal set of cuts can be characterized by a Boolean function fa (where A is a given decision table).
Any set of cuts is A-consistent if and only if the corresponding evaluation of variables in f returns the
value T'rue (see [10]). In [10] it was shown that the quality of cuts can be measured by their discernibility
properties. Intuitively, internal conflict of the set of objects X C U can be defined by the number of
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pairs of objects from X to be discerned. Let (x1, ..., z4) be a class distribution of X, then con flict(X)
can be computed by
conflict(X) = Z TiT;
i<j
The cut ¢ which splits the set of objects U into Uy, and Ug, is evaluated by

Wa,c) = conflict(U) — conflict(Ur) — conflict(Ug)

i.e., the more pairs of objects are discerned by the cut ¢ on a, the larger is a chance that ¢ can be included
to the optimal set of cut. Hence, in the discretization and decision tree induction algorithms based on
Boolean reasoning approach, the quality of a given cut ¢ on « is defined by the number of pairs of objects
discerned by ¢, i.e.,

d d d d
W(a,c)=> LiRj=)> LY Ri—>» LR, (1)
i=1 i=1 i=1

i#j

Algorithms based on the discernibility measure are called the MD-heuristics?.

2.5. Complexity of searching for best cuts

Assume a set of candidate cuts C, = {ci,...,cn } On an attribute a and the quality measure F : C, —
R* are given. Any searching algorithm for the best cuts from C, with respect to measure F requires at
least O(N + n) steps, where n is the number of objects in decision table. In case of large data tables
stored in relational data base, it requires at least O(Nd) simple queries, because for every cut ¢; €
C,, the algorithm is using the class distribution (L1, ..., Lg) of a in (—o0, ¢;) and the class distribution
(R1, ..., Rg) of a in [¢;, 00) to compute the value of F(c;).

Let us consider the client—server architecture with many data tables containing millions of objects
stored in a server. In such architecture, many clients perform at the same time decision tree induction or
discretization for different tables. Then for each client, the set C, can have millions of candidate cuts.
The number of simple queries grows to millions and in consequence the time complexity of algorithm
becomes unacceptable. Of course, some simple queries can be wrapped in packages or replaced by
complex queries, but the data base still has to transfer millions of class distributions from server to every
client. Hence, straightforward methods can not be realized in client-server environment.

The most popular strategy used in data mining is based on sampling technique, i.e., building a model
(i.e., either decision tree or discretization) for small, randomly selected subset of data, and next on eval-
uating the quality of decision tree for the whole data. If the quality of generated model is not sufficient
enough, we have to repeat this step for a new sample (see e.g., [7]).

We would like to present an alternative solution to sampling techniques.

3. Algorithm Acceleration Methods

In this section we present some properties of discernibility measure (based on Boolean reasoning ap-
proach). These make possible to apply MD heuristics to induce decision trees and perform discretization

!Maximal-Discernibility heuristics
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of real value attributes directly from large data. We will expand the presented methods in this section for
other measures in the next section.

3.1. Properties of the Discernibility Measure

In this section we consider cuts on a fixed attribute a. For any cut ¢ on a we denote the discernibility
function of ¢ by W(c) instead of W (a, c).

First, let us consider two cuts ¢;, < cg. Let (Ly,...,Lg) be the class distribution in (—oo;cr,),
(M, ..., My) — the class distribution in [cz,, cg) and (Ry, ..., Rq) — the class distribution in [cg; c0) (see
Figure 3).

L Lo... Ly Mle...Md RR.Ry
G Cr

Figure 3. The class distributions defined by cuts ¢, cg

Now we are ready to show how to compute the difference between the discernibility measures of ¢y,
and cg using information about class distribution in intervals defined by these cuts. The exact formula is
given in the following lemma.

Lemma 3.1. The following equation holds:

d
W(er) = W(er) =) |(Ri—Li) Y M; ¥
i=1 i
Proof:
We have
d d d
Wier) = Y Li ) (Mi+Ri) = Li(M;+ R;) =
i=1 i=1 i=1
d d d d d
= > LY Mi+> Liy Ri— Y Li{M+R)
i=1 i=1 i=1 i=1 i=1
Analogously
d d d
Wi(cr) = » (Li+M)Y Ri—> (Li+M)R; =
i=1 i=1 i=1

d

d d d d
= D Li) Rit) Mi) Ri=) Li(Mi+Ry)

i=1
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Hence,
d d d d
W(cr) - Wia,cr) = > M, (Z Ri—)_ Li) - ((I; + My)R; — Ly(M; + R))))
i=1 i=1 i=1 i=1
d d d
= > M;» (Ri—Li) - > Mi(R; — L)
i=1 =1 i=1
After simplifying of the last formula we obtain (2). O

Our goal is to find cuts maximizing the function W (c¢). We define the notion of boundary cut and we
recall the well known notion in statistics called median (using the notation presented in Section 2.1). Let
C. = {c1,-.,cn } be a set of candidate cuts on an attribute a such that ¢; < ¢ < ... < ¢y. Then

Definition 3.1. Any cut ¢; € C,, Where 1 < 4 < N, is called the boundary cut if a(u1) € [ci—1,¢i),
a(uz2) € [¢i, cit1) and dec(u1) # dec(usg) for some objects uy,ug € U.

Definition 3.2. By a median of the &** decision class we mean a cut ¢ € C, minimizing the value
|Li, — Ry|. The median of the £** decision class will be denoted by Median(k).

We will show that it is enough to restrict the search to the set of boundary cuts.
Theorem 3.1. The cut cpes: maximizing the function W(a,c) can be found among boundary cuts.

Proof:

Assume that ¢, and ¢ are consecutive boundary cuts. Then the interval [c,, ¢p) consists of objects from
one decision class, say C;. For arbitrary cuts ¢z, and cg such that ¢, < ¢r, < ¢cr < ¢, We have M; # 0
and V;;M; = 0. Then the equation 2 has a form

W(cr) — W(cL) = M; 3 (R; — Lj)
J#i

Thus, function W (c) is monotonic in the interval [cq, ¢p) because >, (R; — L;) is constant for all sub
intervals of [cg, cp). O

Theorem 3.1 makes it possible to restrict searching for optimal cuts to boundary cuts only. This
property also holds for Entropy measures (see [4]). This property is interesting but can not be used to
construct any efficient heuristic for the investigated in the paper problem because of high complexity
of the algorithm detecting the boundary cuts (in case of data tables stored in RDB). However, it was
possible to find another property allowing to eliminate the large number of cuts. Let ¢; < ¢o... < ¢y be
the set of candidate cuts, and let

Cmin = min{ Median(i)} and cyq; = max{Median(i)}
K3 K3

Then we have the following theorem:
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Theorem 3.2. The quality function W : {c;,...cx} — N defined over the set of cuts is increasing in
{c1, .-, Cmin } and decreasing in {¢mez, ---, e }. Hence

CBest © {Cmin; eey Cmaw}

Proof:
Let us consider two cuts ¢y, < cg < ¢min. Using Equation 2 we have

d
Wicr) = Wier) =) |(Ri— L)Y M;
i=1 i
Because ¢z, < ¢g < Cmin, hence R; — L; > 0 forany i = 1,...d. Thus W(cg) > W{cy). |

This property is interesting because it states that one can use only O(dlog N) queries to determine
the medians of decision classes by using Binary Search Algorithm. Hence one can reduce the searching
space using O(dlog N') SQL queries. Let us also observe that if all decision classes have similar medians
then almost all cuts can be eliminated.

3.2. ”’Divide and Conquer” Algorithm

The main idea is to apply the “’divide and conquer” strategy to determine the best cut ¢ gest € {c1, ---, ¢n }
with respect to a given quality function.

First we divide the interval containing all possible cuts into % intervals (k = 2, 3, etc.). We will use
some approximate discernible measures to predict the interval which most probably contains the best cut
with respect to discernibility measure. This process is repeated until the considered interval consists of
one cut. Then the best cut can be chosen between all visited cuts.

The problem arises how to define the measure evaluating the quality of the interval [cy,, cg] having
class distributions: (Ly, ..., Lg) in (—o0,cr); (My, ..., Mg) in [cr,cr); and (Ry, ..., Rq) in [cr, 00) (See
Figure 3). This measure should estimate the quality of the best cut among those belonging to the interval
[er, cr).

We consider two specific probabilistic models for distribution of objects in the interval [cy,, cg].

Let us consider an arbitrary cut ¢ lying between ¢z, and cg and let us assume that (z1, zo, ..., z4) iS
a class distribution of the interval [cr, c]. Let us we assume that z1, 2, ..., z4 are independent random
variables with uniform distribution over sets {0, ..., M1 }, ..., {0, ..., My}, respectively. This assumption
is called "full independency assumption”. One can observe that under this assumption

M; M;(M; + 2
Bws) = 2 and D2 () = MM £2)
2 12
forall ¢ € {1,..,d}. We have the following theorem
Theorem 3.3. The mean E(W (c)) of quality W {(c) for any cut ¢ € [cr, cg] satisfies

W{(cr) + W(cr) + conflict([ct, cr])
2

EW(c)) = ©)
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Li Lo... Ly MM, ..M, R Re..R
G Cr

1 ; !
Cc
X o Xy

Figure 4. A random cut ¢ and the random class distribution z1, ..., 4 induced by ¢

where conflict([cr,, cr]) = 3_;.; M; M. For the standard deviation of W (c) we have

2

prw(e) =Y |MED (5 1) @
i=1 i

Proof:
Let us consider any random cut ¢ lying between ¢z, and cg. The situation is shown in the Figure 4.

T
W) -Wier) = 3 |[(Ri+Mi—zi— L)Y
i1 | i
T
= D> |(Ri—L)) zj+ (Mi—zi) Y a
i=1 | i#i j#i
T
W(c)—Wi(cgr) = Z (Li + =; — R;) Z(Mj — ;)
i=1 | i
T
= > |Bi— L)Y (x5 — M) +ai ) _(M; — )
i=1 | i#i j#i
Thus
d
2W (c) — (Wcr) + Wicr) =2 zi(M; —a5) + Y |(Ri — Li) >_(2z; — M;)
i i—1 i
Hence

d .
CERAC S UCINS SRIVIERES oY () 31 (R | BEC

i#] i=1 i
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Then we have

BW(e) = YTWER) | S~ gy, - m(ey)

2 s
i#]

+zd: l(Ri —L)Y (E(xj) - J\gj)]

i=1 j#i

W)+ Wicr) 1
B 2 t3 ZMZ'M"
i#j
W (cr,) + W(cr) + con flict(cr., cr)

In the consequence we have

i£]
Thus
D*W(c) = E(W()-EW(C)P)
M; M
RO ICEERCE )
2
_ le(J\II;+2) (Z(Rj —L])) ]
i=1 j#i
what ends the proof. O

One can use formulas (3) and (4) to construct a measure estimating the quality of the interval [cz, ¢g]

Eval ([cr,,cr),a) = EW/(c)) + ay/D?(W(c)) (6)

where the real parameter « from [0, 1] can be tuned in learning process. The details of our algorithm can
be described as follows:
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ALGORITHM: Searching for semi-optimal cut
PARAMETERS: k€ N and o € [0;1].
INPUT: attribute a; the set of candidate cuts C, = {c1,..,cn} on a;

OUTPUT: The optimal cut c € C,

begin
Left + min; Right + max; {see Theorem 3.2}
while (Left < Right)

1.Divide [Left; Right] into k intervals with equal length by (¥ + 1) boundary
points i.e.,

pl—Le’t"l_l*;l,
for l—O,..,k-

2.For i = 1,..,k compute Eval([cp,_,;Cp;],) using Formula (6). Let [p;_1;p;] be
the interval with maximal value of Ewal(.);

3.Left + pj_1; Right < pj;
endwhile;
Return the cut cref:;

end

One can see that to determine the value Ewal ([cr,, cr], ) we need to have the class distributions
(L1, ...y Lg), (M, ...,My) and (Ry, ..., Ry) of the attribute a in (—o0,¢c1.), [cL, cr) and [cr, o0). This
requires only O(d) simple SQL queries of the form:

SELECT COUNT
FROM DecTable
WHERE (attribute_a BETWEEN value_1 AND value_2) AND (dec = i)

Hence the number of queries required for running our algorithm is of order O(dk log;, N). In practice
we set £ = 3 because the function f(k) = dklog; N over positive integers is taking minimum for
k = 3. For k > 2, instead of choosing the best interval [p;_1, p;], the algorithm can select the best union
[pi—m, ;] Of m consecutive intervals in every step for a predefined parameter m < k. The modified
algorithm needs more — but still O(log N') simple queries only.

3.3. Examples

We consider a data table consisting of 12000 records. Objects are classified into 3 decision classes with
the distribution (5000, 5600, 1400), respectively. One real value attribute has been selected and N = 500
cuts on its domain have generated class distributions as shown in Figure 5.

The medians of classes are cig6, €414 and c1sg, respectively. The median of every decision class has
been determined by binary search algorithm using log N = 9 simple queries. Applying Theorem 3.2
we conclude that it is enough to consider only cuts from {cis, -, ca14 }. In this way 251 cuts have been
eliminated by using 27 simple queries only.



H.S. Nguyen/ Efficient Handling of Continuous Attributes 73
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Figure 5. Distributions for decision classes 1, 2, 3.

In Figure 6 we show the graph of W(c;) for i € {166, ...,414} and we illustrate the outcome of
application of our algorithm to the reduce set of cuts for £ = 2 and o = 0.

26000000

ﬁ/\\/“«
25000000 - / / \
24000000 /
23000000
22000000

21000000

20000000 -

19000000

166 197 228 259 290 321 352 383 414

Figure 6. Graph of W(¢;) fori € {166, ..,414}.

First the cut cago is chosen and it is necessary to determine to which of the intervals [c166, c290]
and [cag0, c414] the best cut belongs. The values of function Ewval on these intervals are computed:
Eval([c166, c290],0) = 23927102, Eval([cago, ca14],0) = 24374685. Hence, the best cut is predicted to
belong to [cage, ca14] and the search process is reduced to the interval [cag9, c414]. The above procedure
is repeated recursively until the selected interval consists of single cut only. For our example, the best
cut cagg has been successfully selected by our algorithm. In general the cut selected by the algorithm is
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not necessarily the best. However numerous experiments on different large data sets have shown that the

cut ¢* returned by the algorithm is close to the best cut ¢pes: (i.€., WVE/;(;;),&) - 100% is about 99.9%).

4. Local and Global Search

The presented above algorithm is called also ”local search strategy”. Using local search algorithm, first
we have to discover the best cuts on every attribute separately. Next, we compare all locally best cuts to
find out the best globally. This is a typical search strategy for decision tree construction (see e.qg., [18]).

The approximate measure makes possible to construct “global search strategy” for the best cuts. This
strategy becomes helpful if we want to control the computation time, because it performs both attribute
selection and cut selection processes at the same time.

The global strategy is searching for the best cut over all attributes. At the beginning, the best cut can
belong to every attribute, hence for each attribute we keep the interval in which the best cut can be found
(see Theorem 3.2), i.e., we have a collection of all potential intervals

Interval Lists = {(a1,!1,71), (ag,l2,72), ..., (ag, lg, 7%) }
Next we iteratively run the following procedure

e remove the interval I = (a,cy,, cgr) consisting of the best cut with highest probability
(using Formula 6);

o divide interval I into smallerones I = I U I»... U I;
e insert I, Iy, ..., I} to Interval Lists.

This iterative step can be continued until we have one—element interval or the time limit of searching
algorithm is exhausted. This strategy can be simply implemented using priority queue to store the set of
all intervals, where priority of intervals is defined by Formula 6.

5. Further Results

We presented the approximate discernibility measure with respect to the full independency assumption,
i.e., assuming distributions of objects from each decision class in [c1,, cg] are independent. Under this
assumption, the quality of the best cut in interval [cr., cr] was evaluated by

2
n

Wocr) + W(cr) —;conflict([cL, cr]) ‘o Z MZ(J\II;+ 2) Z(Rj 1)

i=1 j#i

for some « € [0, 1].

In this section we would like to consider the approximate discernibility under "full dependency as-
sumption” as well as approximate entropy measure under both independency and dependency assump-
tions.
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The full dependency is based on the assumption that the values «1,...,z4 are proportional to My ,...,My,

i.e.,
T Z2 Zq

E’Z E:."_ Md
Letz =1 + ... + zg and let £ = 77, we have
Il ’ZMl-t; Z‘Q’ZMQ-t; xd:Md-t (7)

where t is a real number from [0, 1].

5.1. Approximation of discernibility measure under full dependency assumption

After replacing the values of x4, ..., 4 in (7) to Equation 5 we have

d .
W(e) - W (cr) ';‘W(CR) + sz(M] —z;) + Z l(Rz - Ly) Z (mj - J\;—[])]
it i=1 J#i
d
_ W(cL);rW(CR) + > Myt (M - M- t)+ > [(Ri — L)), (MJ' i A;r])]
oy i=1 J#i
= A?4+Bt+C
where
A = _— (Z M, 'Mj) = —2- conflict([cL, cr])
i£]
B = Y M;-Mj+Y M- (Rj— Lj)=2-conflict(fer, cr]) + W (cr) — W (cr)
i#j #j
o Wer) ;FW(CR) _ %ZMZ (R — Ly)
i£]
_ W(CL) -;W(CR) _ W(CR) ; W(CL) — W(CL)

We want to find the maximal value of f(t) for ¢ € [0, 1].
It is easy to check that the function f(t) = At? + Bt + C with A < 0 reaches his global maximum
for
, B 1 Wier) =Wl
M 24 2 4-conflict([cr,cr])
and the maximal value is equal to

A Wier) + Wi(cr) + conflict([cr,, cr]) n [W(cr) — W(cp)]?

f(tmaz) = 44 2 8 - conflict([cL,, cr])
Then we have _
o £(8) = { f(tmaz) i tmaz € [0,1]
t€[0,1] max{f(0), f(1)}  otherwise

Thus we have the following
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Theorem 5.1. Under full independency assumption, the quality of the interval [cg, c¢z] can be evaluated
by Ewval([ct,, cr]), where

o if |W(cgr) — Wi(cL)| < 2-conflict([ct,cr]) then

W (cr) + W (cr) + conflict(fer, crl) | [W(cr) = W(ep)]”
2 8 - conflict([cr, cr])

Eval([cr,cr]) = (8)

e otherwise Ewval([cr,, cr]) is evaluated by

ma‘X{W(CL)a W(CR)}
One can see that for both dependency and independency assumptions, the discernibility measure of

the best cut in the interval [cg, cz] can be evaluated by the same component

W{(cr) + W(cr) + conflict([ct, cr])
2

and it is extended by the second component 4, where

_ 2
5 — Wier) ‘ W (c1)] (under full dependency assumption)
8 - con flict([cr,, cr])

d = a-v/D*)(W(c) for some « € [0,1]; (under full independency assumption)

Moreover, under full dependency assumption, one can predict the placement of the best cut. This
observation is very useful in construction of efficient algorithms.

5.2.  Approximate Entropy Measures

In previous sections, the discernibility measure has been successfully approximated. The experimental
results show that the decision tree or discretization of real value attributes constructed by means of
approximate discernibility measures (using small number of SQL queries) are very close to those which
are generated by the exact discernibility measure (but using large number of SQL queries). In this section,
we would like present similar results for entropy measure.

Using the standard Entropy-based methods (see e.g., [18]) we need the following notions:

1. Information measure of the set of objects U

d d
N; 1
Ent(U) = —Z ]log N = ZW] log N; — logN)zlogN—NZleogNj
j=1 j=1
d
1
=~ (NlogN ZN logN) = ( Zh )
j=1 j=1

where h(z) = zlogz.
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2. Information Gain over the set of objects U received by the cut ¢ is defined by

. ) — En UL |UR| ...
Gain(a,c;U) = Ent(U)— (|U| Ent(Ur) + 0] E t(UR))

where {Ur,, Ur} is a partition of U defined by ¢. We have to chose such a cut ¢ that maximizes the
information gain Gain(a, ¢; U) or minimizes the Entropy induced by this cut

Ent(a,c;U) = ||U||E t(UL) + WEnt (Ur)
L [1 d R |1 d
= ~vlz h(L) - ;h(Lj) Y17 h(R) — ]Z:;h(R])

d d
— % h(L)—Zh(Lj)+h(R)—Zh(RJ)

where (L, ..., Lg), (Ry, ..., Rgq) are class distribution of Uy, and U, respectively.

Analogously to the discernibility measure case, the main goal is to predict the quality of the best cut

(in sense of Entropy measure) among those from the interval [cz,, cr], i.e., Ent(a,¢;U) = %f(ml, ey Tg)
where

d d
F@1, oy ma) = ML +2) = > W(Lj+z;) + W(R+M —z) = > h(R; + M; — z;)
j=1 j=1

5.2.1. Approximation of entropy measure under full dependency assumption

In this model, the values z1, ..., z; can be replaced by

iL‘lszl-t; Z‘Q’ZMQ-t; iL‘d’sz-t
where t = & € [0; 1] (see Section 5.1). Hence, the task is to find the minimum of the function
d d
FO =hIL+M-t) = h(L;j+M;-t) +h(R+M—M-t)= > h(R; + M; — M; - t)
j=1 j=1

where h(z) = zlogz and h'(z) = log x + log e. Let us consider the derivative of function f (%)

f't) = Mlog(L+ M -t)— Z Mjlog(L; + M; - t)
j=1

d
—Mlog(R+M — M -1)+ > M;log(R; + M; — M; - t)
j=1
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Theorem 5.2. f'(t) is decreasing function.

Proof:
Let us compute the second derivative of f(t):

d 2 d 2
M? M; M? M;

n
) = - -
f() L+ M-t Z:Lj+Mj-t+R+M—M-t — Rj‘i‘Mj—
7j=1 7j=1

M;j -t

One can show that f”(t) < 0 for any ¢ € (0, 1). Recall the well known Minski inequality:

n n n 2
Z a? Z bz2 > (Z aibi)
=1 i=1 i=1

for any a1, ..., ay, b1, --., by € R. Using this inequality we have:
d M2 d d M2 d 2
(L+M- tZ X/I Z(Lj+Mj-t)ZWZ ZMj = M?
J=1 Jj=1 j=1 j=
Hence

Similarly we can show that

R+M Mt_R+M M-t

Hence, for any ¢ € (0;1) we have f”(¢) < 0. This means that f’(t) is decreasing function in the interval
(0,1). O

The following example illustrates the properties of f/(¢). Let us consider the interval (cr.,cr) con-
sisting of 600 objects. The class distributions of intervals (—oo; ¢;), (cr,, cr) and (cg; oo) are following:

Left Center Right
Dec=1 | Ly =500 | M;=100 | R;=1000
Dec=2 | Ly=200 | M-> =400 R, =800
Dec=3 | L3=300 | Ms=100 R3 =200
Sum L=1000 | M =600 R =2000

For this data the graph of deviative f’(¢) is shown in the Figure 7.

The proved fact can be used to find the value ¢, for which f/(zo) = 0. If such # exists, the function
f has maximum at ¢9. Hence, one can estimate the quality of the interval [cz,cgr] (under assumption
about strong dependencies between classes) as follows:
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Figure 7. The function f'(t)

e If f/(1) > 0then f'(t) > 0 forany t € (0;1), i.e., f(%) is increasing function. Hence cg is a best
cut.

e If f/(0) < 0then f'(¢t) < 0foranyt e (0;1), i.e., f(t) is decreasing function. Hence cy, is a best
cut.

e If f/(0) < 0 < f'(1) then locate the root ¢y of f/(¢) using "Binary Search Strategy”. Then the best
cut in [er,, cr] can be estimated by - f(%o)

5.2.2. Approximation of entropy measure under full independency assumption

In the independency model, one can try to compute the expected value of the random variable f(z1, ..., 4)
using assumption that for ¢ = 1, ...,d, x; are random variables with discrete uniform distribution over
interval [0, M;].

First, we will show some properties of the function h(z). Let = be a random variable with discrete
uniform distribution over interval [0; M]. If M is sufficiently large integer, the expected value of A(a +
z) = (a + ) - logy(a + z) can be evaluated by:

M
Blh(a+2)) = 12 / (a +2)log(a + 2)dz
0
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We have
a+M
1 1 [(22logz 2 \|*™
E(h(a+1z)) = Y / zlog zdz = M( 5 4ln2) .
_ 1 a+M210g M)_(a+M)2_a210ga a?
B M 41n2 2 41n?2
a+ M (a+ M)? — o2
= — M _er) —%
M [ atM)- 2h(a) 4In2
 (a+M a+M)—ah()_2a+M
B 2M 41n?2
Now one can evaluate the average value of E(a,c;U) by
d d
1
B (@, 20)) = B(W(L+2)) =Y B(h(Lj+2;)) + B(h(R+M —2)) = > E(h(R;+M;— 1))
Jj=1 j=1

6. Conclusions

The problem of optimal binary partition of continuous attribute domain for large data sets stored in
relational data bases has been investigated. We have shown that one can reduce the number of simple
queries from O(NN) to O(log N) to construct the partition very close to the optimal one. We defined
some approximated discernibility measures and approximated entropy measures. The theoretical results
showed that it is easier to approximate the discernibility than entropy measures.
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