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Abstract. This paper considers models of sensors, filters, and sensor fusion with Petri nets defined
in the context of rough sets. Sensors and filters are fundamental computational units in the design of
systems. The intent of this work is to construct Petri nets to simulate conditional computation in ap-
proximate reasoning systems, which are dependent on filtered input from selected sensors considered
relevant in problem solving. In this paper, coloured Petri nets provide a computational framework
for the definition of a family of Petri nets based on rough set theory. Sensors are modeled with what
are known as receptor processes in rough Petri nets. Filters are modeled as t.ukasiewicz guards on
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some transitions in rough Petri nets. A tukasiewicz guard is defined in the context of multivalued
logic. tukasiewicz guards are useful in culling from a collection of active sensors those sensors
with the greatest relevance in a problem-solving effort such as classification of a ”perceived” phe-
nomenon in the environment of an agent. The relevance of a sensor is computed using a discrete
rough integral. The form of sensor fusion considered in this paper consists in selecting only those
sensors considered relevant in solving a problem. The contribution of this paper is the modeling
of sensors, filters, and fusion in the context of receptor processes, ukasiewicz guards, and rough
integration, respectively.

Keywords: approximation, enabling, filter, fusion, guard, multivalued logic, Petri net, rough mea-
sure, rough integral, rough sets, sensor.

1. Introduction

Considerable work has already been carried out in modeling various forms of systems with Petri nets in
the context of rough sets (see, for example, [21]-[26],[27],[29],[30]-[34],). The aim of the earlier as well
as the current research has been to provide a complete framework for approximate reasoning, especially
in the context of rough set theory from Pawlak [13]-[18]. Rough set theory also provides an inductive
approach to reasoning about data. This paper returns to the idea of rough Petri nets in [23]-[26]. Guarded
transitions are conceptualized in the context of multivalued logic from tukasiewicz [11] and rough sets
[13]-[14]. Such transitions provide the basis for the design Petri net models of sensor filters, which are
fundamental in the design of rough neural computing systems. Dill receptor processes are used to define
input places in sensor-driven systems. tukasiewicz guards are introduced to provide conditional firing
to a degree of one or more transitions in Petri net models of dynamical systems. Rough integrals are
used to design particular forms of tukasiewicz guards. The contribution of this paper is the modeling of
sensors as receptor processes, filters as tukasiewicz guards, and fusion of sensors considered relevant in
a problem-solving effort, respectively.

This paper is structured as follows. A brief presentation of a rough set approach to set approximation
and a form of rough membership function is given in Section 2. Rough measures and rough integrals
are introduced briefly in Section 3. Rough Petri nets, receptor processes, and tukasiewicz guards are
presented in Section 4. Petri net models of sensors and filters are given in Section 5. The culmination of
these ideas appears in a Petri net model of sensor fusion in Section 6.

2. Basic Concepts of Rough Sets and Rough M easures

Rough set theory offers a systematic approach to set approximation [13]-[14]. In this paper, p(X)
denotes the set of all subsets of X and card(X) denotes the number of elements of set X.

2.1. Set Approximation

To begin, let S = (U, A) be an information system where U is a non-empty, finite set of objects and A
is a non-empty, finite set of attributes, where a : U — V,, for every a € A. For each B C A, there is
associated an equivalence relation Ind4(B) such that

Inda(B) = {(z,2') € U? | Va € B a(z) = a(z')}
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If (z,2') € Inds(B), we say that objects = and z’ are indiscernible from each other relative
to attributes from B. The notation [z]p denotes equivalence classes of Ind4(B). Further, partition
U/Ind4(B) denotes the family of all equivalence classes of relation Ind4(B) on U. For X C U, the
set X can be approximated only from information contained in B by constructing a B-lower and B-
upper approximation denoted by BX and BX respectively, where BX = {z | [z]p C X} and
BX ={z|[z]pN X # 0}.

2.2. Rough Membership Functions

In this section, a set function form of the traditional rough membership function is presented.

Definition 2.1. Let S = (U, A) be an information system, and let p(U) denote the powerset of U, B C
A,u € U and let [u] g be an equivalence class of an object v € U of Ind 4(B). The set function

5 B _ card (X N[u]p)
ol = 9 (U) = [0,1], where ) (X) = = e

1)

forany X € o(U) is called a rough membership function. A rough membership function provides a clas-
sification measure inasmuch as it tests the degree of overlap between the set X in p(U) and equivalence
class [u]g. The form of rough membership function in Def. 2.1 is slightly different from the classical
definition where the argument of the rough membership function is an object z and the set X is fixed
[18].

Example 2.2.
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Figure 1. Sample dc Link Between Two ac Systems

A high voltage direct current (dc) transmission system connected between alternating current (ac)
source and ac power distribution system has two converters. The notation ac (or dc) is commonly used
instead of AC (or DC) in electrical engineering (see, for example, [1],[8],[10],[12]). In the case where
the flow of power is from the ac side to the dc side as in Fig. 1, then a converter acts as a rectifier in
changing ac to dc. A device that converts dc power into ac power at desired output voltage and frequency
is called an inverter [1]. The Dorsey Station in the Manitoba Hydro system, for example, acts as an
inverter in converting dc power received from hydroelectric plants in northern Manitoba to ac power,
which is distributed throughout North America.

Power system faults are recorded in fault files. Consider, next, the information system S = (A, F'),
where A is a set of attributes such as phase current, current setting, and maximum phase current, and



310 J.F.Peters et al./ Sensor, Filter, and Fusion Models with Rough Petri Nets

F is a set of fault files. Assume that AF = {file3, file4, file7,file8}. Further, assume that [f3]4a =
{ equivalence class consisting of files representing a known power system fault} = {file3, file9, file10}.
Then consider the degree of overlap between AF and [f3]4 (see Fig. 2).

AF

(5],
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K, (AF)— ‘[z‘,,]A =
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Fig. 2 Overlapping regions

3. Rough Measuresand Integrals

This Section gives a brief introduction to rough measures and rough integrals [19]-[20]. We assume X
and U are finite, non-empty sets.

3.1. Additive Set Functions

Let us recall some basic definitions [7].

Definition 3.1. A function X : p(X) — R where R is the set of all real numbers is called a set function
on X.

Definition 3.2. Let A be a set function on X. The function A is said to be additive on X iff A\(AU B) =
A(A) + \(B) for every A, B € p(X) such that AN B = (i.e., A and B are disjoint subsets of X).

Definition 3.3. A set function A on X is called to be non-negative on X iff A\(Y) > 0forany Y € p(X).

Fact 3.4. The rough membership function 42 : p(X) — [0,1] is a non-negative and additive set func-
tion on X.

3.2. Rough Measures

Let S = (U, A) be an information system, X C U, B C A, and let Ind 4(B) be the indiscernibility
relation on U.

Definition 3.5. The tuple (X, p(X),U/Ind4(B)), where U/Ind4(B) denotes a set of all equivalence
classes determined by Ind(B) on U, is called an indiscernibility space over X and B.

Definition 3.6. Let w € U. A non-negative and additive set function p,, : p(X) — [0, 00) defined by
oY) = (Y N[ulp) for Y € p(X), where p' : p(X) — [0,00) is a set function, is called a rough
measure relative to U/Ind4(B) and w on the indiscernibility space (X, p(X),U/Ind4(B)).

Definition 3.7. Let p,, foru € U be a rough measure on the indiscernibility space (X,p(X), U/Ind 4(B))
foru € U. The tuple (X, p(X), U/Ind4(B), {pu}ucr) is a rough measure space over X and B.
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Proposition 3.8. [20] (X, p(X),U/Ind(B),{uB}.cv) is a rough measure space over X and B.

3.3. Discrete Rough Integrals

Rough integrals were introduced in [19], and elaborated in [20]. In this Section, we consider a variation
of the Lebesgue integral, the discrete Choquet integral defined relative to a rough measure. In what
follows, let X = {z1,...,z,} be a finite, non-empty set with n elements. The elements of X are
indexed from 1 to nn. By (e) we denote a permutation of the set {1,...,n} and () denotes its value for i.
The notation X(;y denotes the set {x(;), Z(i+1);- - - » T(n)} Where i > 1 and n = card(X). The subscript
(4) is called a permutation index because the indices on elements of X ;y are chosen after a reordering of
the elements of X. This reordering is ”induced” by an external mechanism.

Example 3.9. Let X = {z1,z2} the function a : X — RT where R" is the set of non-negative
real numbers, be defined such that a(x1) = 2001, a(z2) = 44. That is, a(z1) > a(z2). Then, after
reordering the elements of X and assigning permutation indices to the reordered elements, we obtain
a(x(l)) < a(x(Q)) where Za) = T2 and Z) = T1; X(l) = {1, 2}, X(2) = {z1}. Next, we use a
functional defined by Choquet in 1953 in capacity theory [3].

Definition 3.10. Let p be a rough measure on X where the elements of X are denoted by z1,...,zn.
The discrete Choquet integral of f : X — RT with respect to the rough measure p is defined by

©) / Fdo =" (f(w) — F@a—n)p(Xm)
i=1

where e(; specifies that indices have been permuted so that 0 < f(z(;)) < -+ < f(zm)), X =
{:L‘(i), . ,Z‘(n)}, and f(iL‘(O)) =0.

This definition of the Choquet integral is based on a formulation in Grabisch [6]. The rough measure
p(X(i)) value serves as a "weight” of a coalition (or combination) of objects in set X ; relative to
f(z@)). 1t should be observed that in general the Choquet integral has the effect of "averaging” the
values of a measurable function. This averaging closely resembles the well-known Ordered Weighted
Average (OWA) operator [35].

Definition 3.11. Ordered Weighted Average (OWA). Letay,...,a, be real-numbers that are ordered
n
so that ay < -+ < agy), and let wy, . .., wy a set of weights such that > w; = 1. The OWA operator

=1
is defined as follows:

n
OWAUI1,...,wn (al, ceey an) = Z wza(z)
i=1

We are interested in integrating an attribute in the search for attributes that ”score” well relative to
weighted sets X ;) of ordered objects.
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3.4. Redevance of an Attribute

In this section, we consider the measurement of the relevance of an attribute using a rough integral. The
measure (1) is fundamental in computing an "average” sensor value. Intuitively, we want to identify
those sensors with outputs closest to some threshold.

Example 3.12. Let {a} = B C A wherea : U — [0,0.5] where a(z) is rounded to two decimal
places. Let (Y, U-Y) will be a partition defined by an expert e and let [u]. denote a set in this partition
containing u for a fixed w € U. We assume a decision system (X, a, e) is given for any considered
attribute (sensor) a such that X, C U, a : X, — R, and e is an expert decision restricted to X, defining
a partition (Y N X,, (U-Y) NX,) of X,. Moreover, we assume X, N [u]e # @. Consider the following
decision tables.

Table 1(a) Table 1(b)
X, {a.e} a e X {a.e} a e
x;=0.203 | 0.2 0 x>,= 0.454 0.45 1
x-=0.454 | 0.45 1 Xo— 0.455 0.46 1
x3=0.453 | 0.45 1 X;0= 0401 0.4 1
x,=0.106 | 0.11 0 x1=0407 | 041 1
x5=0.104 | 0.10 0 X,=0429 | 043 1

From Table 1(a), (C) J a du& = 0.1 From Table 1(b), (C) [ a dut = 0.239

In Table 1(a) and Table 1(b) the set X, represents the set of objects observed by sensor a in time
while [u]. denotes a fixed a priori set of objects. The decision d is 1 for objects from [u],. The goal is to
estimate how close the sensor measurements are to [u]e.

From these two cases, it can be seen the relevance of attribute improves as the value of the rough
integral increases in value. For a particular [u]., the rough integral measures the relevance of an attribute
for a particular table in a classification effort. That is, the integral (over all values for a given attribute)
reflects in a sense the degree of definability of the partition of objects created by singletons by a partition
defined by the values of a given attribute.

One can observe that the following property holds for rough integrals.

Proposition 3.13. Let0 < s < r. If a(z) € [s,r] forall z € X,, then [ adu € (0,r] whereu € U.
Proof: Since 0 < s < r, it is enough to show that (1) [ adué < rand (2) [ adué > 0.
(1) We have pg,(X(;)) < 1, B = {e}. Hence

n

/adﬂﬁ = (alzg) — alea_)Ls(Xp) < (a(zg) — alzg_y)) =
im1

i=1

a(T@m)) <
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(2) From the assumptions, there exists at least one z € [u]e. Hence, Jg>1 @ pg(X(x)) > 0. After
reordering of the subsets of p(X'), we know that n¢ is a non-increasing, non-negative function. Hence,
pe(X(1)) > 0. Consider the case where a(z (1)) = s. Then compute

n

/adui = (alzg) — alzp-n)ke(Xa) > (alz) — alz)) - po(Xq) =

i=1

a(z(1)) - ta(X(1)) > 0.
O

Moreover, when the set of sensor a values is close to [u]e, then f adps is close to the maximal value
integral can take for a sensor. Measures of closeness depend on applications and their parameters can be
tuned for specific data cases and targets.

4. Rough Petri Nets

A rough Petri net models a process that implements one or more features of rough set theory. Rough Petri
nets are derived from coloured and hierarchical Petri nets as well as from rough set theory. Coloured Petri
nets provide a well-understood framework for introducing computational mechanisms (data types, vari-
ables, constants, and functions) that are useful in describing processes that carry out set approximation,
information granulation and engage in approximate reasoning. The new form of Petri net utilizes rough
set theory, multivalued logic and receptor process theory to extend coloured Petri nets. Three extensions
of coloured Petri nets are described in this article: (1) multivalued guards, (2) receptor processes, and
(3) rough computing. Briefly, this is explained as follows. Boolean valued guards in traditional coloured
Petri nets are replaced by multivalued guards in rough Petri nets. Let T be a set of transitions. In a
coloured Petri net, a guard is a mapping G : T' — {1, 0}. A transition is enabled if G returns 1. In keep-
ing with an interest in modeling approximate reasoning, we augment coloured Petri nets with guards of
the form G : T — [0, 1]. With this form of guard, it is possible to model a level-of-enabling of a transi-
tion that is more general than the usual “on/off” enabling model. Places in a Petri net represent the states
of a system. An input place is a source of input for a method associated with a transition. An output place
is repository for results computed by a transition method. In a rough Petri net, an input place can be a
receptor process. This form of input place responds to each stimulus from the environment by measuring
a stimulus and by making each measurement available to a transition method. This extension of the input
place convention in coloured Petri nets is needed to model dynamically changing systems that perform
actions in response to sensor signals. There is an iteration "inside” a receptor process that idealizes a
typical sensor-action system found in agents. That is, the intent behind a provision of input places that
are receptor processes is to model a sensor that enables a response mechanism represented by a transition
method each time the sensor is stimulated. Rough computation is the third extension of coloured Petri
nets considered in this article. This feature is the hallmark of a rough Petri net. It is characterized by the
design of transition methods that compute rough set structures as well as values of measurable functions
and rough integrals. This feature is important to us because we are interested in modeling intelligent
systems and information granulation. In this article, the modeling of rough computation is limited to
a partial model of an information granulation system where granulation results from a fusion of sensor
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signal values. A rough Petri net also includes a strength-of-connection mapping from arcs to weights.
This feature of rough Petri nets is useful in modeling neural computation but is not considered in this
article. A rough Petri net provides a basis for modeling, simulating and analyzing approximate reason-
ing, decision and control systems. In what follows, it is assumed that the reader is familiar with classical
Petri nets in Petri [28] and coloured Petri nets in Jensen [9].

Definition 4.1. Rough Petri Net. A rough Petri net is a structure (3, P, T, A/N,C, G, E, I, W, R, &)
where

e > isafinite set of non-empty data types called color sets;

P is a finite set of places;

T is a finite set of transitions;

Aisafinite set of arcs suchthat PN T=PNA=TNA=0;

N is a 1-1 node function where N: A — (P x T) U (T x P);

C is a color function where C: P — >_;

G is a guard function where G: T — [0, 1];

E is an arc expression function where E: A — Set_of _Expressions where E(a) is an expression of
type C(p(a)) and p(a) is the place component of N(a);

| is an initialization function where I: P — Set_of Closed _Expressions where 1(p) is an expression
of type C(p);

W is a set of strengths-of-connections where £ : A — W,

e R = {ps|ps isamethod } ;

® p, isa method that constructs a rough set structure or computes that a value.

A sample p, is a method that constructs a rough set structure (e.g., an upper approximation of a
set X relative to a set of attributes B, or the set OPT(S) of all rules derived from reducts of a decision
system table for an information system S). Another example of p, is a rough membership function. The
availability of guards on transitions makes it possible to model sensor filters and various forms of fuzzy
Petri nets. Higher order places representing receptor processes are part of rough Petri nets.

4.1. Receptor Processes

The notion of a receptor process comes from Dill [4]. In a rough Petri net, a receptor process is a higher
order place that models a sensor. The input place labeled ?pl in Fig. 3(a), for example, represents a form
of receptive process that accumulates a signal.

A receptor process is a process that provides an interface between a system and its environment by
recording its response to each stimulus in a finite set of sample sensor values (a signal) whenever stimuli
are detected.
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In the case where an environment is a source of continuous stimulation, a receptor process continu-
ously enqueues its responses and periodically enables any transition connected to it. The advantage in
constructing such a Petri net model of sensor-dependent systems is that it facilitates reasoning about a
system design and simulation of the responses of a system to stimuli. For example, let ?p1 be a receptor
process; X, a set of inputs (signal) produced by ?pl and let £ be a rough membership function. Let
(Y,U-7Y) will be a partition defined by an expert e and let [u]. denote a set in this partition containing
u for a fixed w € U (see Fig. 3(a)).

Fig. 3(a) rPN without guard Fig. 3(b) guarded PN

When transition t1 in Fig. 3(a) fires, u& (X) computes a rmf value. The notation X (denoting a set
of values ”produced” by the receptor process named ?p4) used to label the input to transition t2 in Fig.
3(b) is commonly used in the Petri net models given in this paper. The set X represents a signal or set
of sample receptor process values that are accumulated over time. The notation B on the arc from place
p0 to transition t2 represents a set of attributes that will be used by method p to construct a rough set
structure. Whenever t2 fires, p constructs the upper approximation BX. A Petri net model of a receptor
process is given in Fig. 4.

p out

s
o
-
i
=
et
=

Figure 4. Petri net model of a Receptor Process

Transition trespong IN Fig. 4 is enabled whenever it receives a stimulus Z s¢;muiys. Transition to is con-
tinuously enabled. Whenever t, fires, it performs a detect operation ("looking” for a stimulus from the
environment). In Fig. 4, the function 7 constructs a set of excitation signal values. The function =
describes a sensor as a mapping of an input signal value z(t) (also called a stimulus [5]) in the time
domain to some convenient form of output signal. In classical signal processing, a signal is a real-valued
function z of time £. Let z : RT — R where RT is the set of all non-negative reals, denote a signal.
The behavior of a sensor over a time interval [to, ] is represented by a set X of sample sensor values
{z(to),...,z(tx)}. The transition labeled t; in Fig. 3(b), for example, is enabled by a sensor signal X
and set of attributes B. That is, define m(z(t)) = {z(t)}, if X = 0, otherwise 7 (z(t)) = X U {z(¢)}.
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4.2. Guarded transitions

A guard G(t) is an enabling condition associated with a transition t. In a rough Petri net, various families
of guards can be defined which induce a level-of-enabling of transitions. tukasiewicz guards were
introduced in [23]. There are many forms of Lukasiewicz guards. In this section, we consider a guard
which is a real-valued, non-negative set function. Let U denote a universe of objects.

Let (L, <) be a lattice with the smallest element _L and all other elements being incomparable. In the
paper we assume L — {1} to be equal an interval of reals.

Definition 4.2. For a given function A(X) from the domain of the variable X into L — {L} and a
condition «, i.e. function from L — { L} into {0,1} we define the fukasiewicz guard Py o(X) as a
function from the domain of the variable X into L defined by

Py o(X) = MX) if o(AMX)) =1, and L otherwise.

We assume ¢ labeled by P ,(X) is enabled iff a(A(X)) holds, i.e. a(A(X)) = 1. The value A(X) of
P, (X) is a part of output labeling the edges outgoing from ¢ if ¢ is fired.

Examples of conditions czare 0 < A(X) <1 or A(X) > b > 0 where b is a selected b € (0, 1].

For example, let b = 0.75, X = {z(¢)}, and let a Lukasiewicz guard be defined on a transition t2
as in Fig. 3(b), where t2 is enabled for all values of A(z) € [0.75,1]. If we assume A(z) = 0.79, then
A(z) = 0.79 enables transition t2 (see Fig. 5).

Sample mOdel fOI’ a Lukasiewicz . Sample Lukasiewicz distribution
guard: oo A 2. (44) = 0.9975
P 08|
Alx) = ¢ 07k
. . 06
P,;(x) = M) if a(A(x)) holds, 0 otherwise.
For example o(x) can be defined as follows: 05F
o(x) iff x € (0.75,1]. Hence, we have in 04l
particular: P, ;(x) = 2(x) iff a((x)) holds. o3
Sample enabling: 0zr \ 1
X =45 0.1 / AN .
s =20 % 10 20 30 40 50 60 70 80 90 100
A(44) = 0.9975 Figure 5. Distribution for a Lukasiewicz Guard

P, (44) = 1(44) = 0.9975 that enables
transition t

5. Sensorsand Filters

Petri net models for sensors and filters were introduced in [26].

5.1. Sensors

A sensor converts some form of stimulus into a measurable output. By contrast with transducers, the out-
put of some sensors might not be some form of energy. For example, the output of a digital thermometer
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is numerical. Hence, a digital thermometer would be classified as a sensor but not a transducer. Notice,
also, that some sensors are also transducers. Most sensors employ one or more transduction mechanisms
to produce a usable output signal.

A sensor is a device that responds to each stimulus by converting its measured input to some form of
usable output.

A sensor responds to each stimulus that it is designed to detect. In effect, a sensor is always input-
ready. By definition, a receptor process can be used to model a sensor. Hence, any sensor can be modeled
as a receptor process.

Example 5.1. A light sensor L responds to light (i.e., a detected number of photons per second) by a
voltage ouput (e.g., 0.87 volts when a photoresistor is struck by 2.3 x 10'3 photons per second) [5].
Light sensors can be used to enable mobile robots to stop its activity in the dark or to move toward a
beacon. Let R, Ry, v(t),vpg(t) be the ohms of a resistor in the photoresistor circuit for L, resistance
of L, voltage input v(¢) at time ¢ in a circuit containing L, and output voltage vpg(t) at time ¢ in L,
respectively, where
Ry,

= t

R+ Ry, v(t)
To obtain a receptor process model of sensor L, replace z(t) in Fig. 4 with R, Ry, v(t) and = with
vpg(t), respectively (see Fig. 6).

UPE(t)

R Ry, v(t) Vpr(t) L

Figure 6. Petri Net Model of a Light Sensor

52. Filters

Filters provide a means of weeding out sensor signals which are not wanted and in modifying or manip-
ulating sensor signals to facilitate their usage in a system. This is case in noisy communication system,
for example, where electric filters are used to eliminate signal contamination.

A filter is a mechanism that selects readings of a sensor relative to one or more selection criteria.

In the case of an electric filter, its selection can include the modification, reshaping or manipulation
of the frequency spectrum of an electric signal according to some prescribed requirements. Filters are
useful, for example, in eliminating signal contamination and in separating relevant from irrelevant sensor
inputs. It is in this latter sense of filter-usefulness that filters are considered in the context of rough Petri



318 J.F.Peters et al./ Sensor, Filter, and Fusion Models with Rough Petri Nets

nets. Notice that a t.ukasiewicz guard can be used as the basis for a model of a filter on sensor input
of an approximation neuron, since there is interest in preventing input signals with approximately zero
strength from enabling an input transition. As mentioned earlier, a t.ukasiewicz guard can be defined
over [a,b] = [a,1] where a > O relative to a set X of sample signal values. In effect, a £ukasiewicz
guard can be used to model a sensor filter.

To complete the modeling of a sensor filter, a restricted ukasiewicz guard can be introduced. Let
wr,, wpr denote real-valued low signal cutoff and high signal cutoff, respectively. This form of guard is
motivated by a need to identify what is known as a bandpass filter, where no signal is "accepted” outside
an interval [wr,, wir].

Definition 5.2. Restricted tukasiewicz Guard. A t.ukasiewicz guard P, x(X) on transition ¢ with input
X is called restricted if the condition «(z) is defined by a(z) holds iff z € [wz,,wr] C [0, 1] for some
wr,,wp € [0,1].

If we assume that the input to a tukasiewicz guard comes from a sensor, then such a guard acts a
filter. Hence, any restricted tukasiewicz guard with sensor input is a bandpass filter.

Notice that a .ukasiewicz guard can be defined over [wr,, wrr| = [wr,, 1] where wy, > 0 and wy = 1.
In effect, we define condition a by a(z) iff A(z) € [wr, 1], which is called a highpass band. Hence, the
tukasiewicz guard in Def. 5.2 can be used to model a highpass filter. Hence, any tukasiewicz guard
with sensor output restricted to [wr,, 1] is a highpass filter model.

Example 5.3. Consider a large room where a uniform temperature must be achieved with a combination
of sensors, sensor filters and heating elements (see Fig. 7). Ambient temperatures are a problem in
controlling room temperature. It may be warm in one part of the room, and cold in another part of the
room. For simplicity, a single sensor plus filter and single heating element are represented in Fig. 7. Let
T denote a temperature sensor and let 7(z) denote a sample temperature reading. Also assume that 7
is connected to a filter A, which maps the recorded temperature to [0, 1] as shown in Fig. 8. A sample
decision table reflecting reactions of the system to sensed temperatures is shown in Fig. 8. The decision
d has a value chosen by an expert for any local temperature state. For example, 7(z1) returns a chilly
sample temperature of 1.49 C and A(1.49) returns a 0.9 filter value. The corresponding approximation
regions with respect to A, 7 are shown in Fig. 9.

heater Sensor _
: = TX i
I t ;Y d f i~ I~ tt F
: - - RRCYPR YS!
| A %1149 09 [heatOn P 7
! ]j 5 {220 10 [heatOff (RRSY PR RYES: -
: %5 (190 098 JheatOn heatOn
! T % 1190 098 [fheatOff LT
ﬁ _______ | _ %5 1180 089 [heatOff LAae el )
% [1.25 0.95 JheatOn heatOn/heatOff  ———
L7 i heatOff

Figure 7. Heat controlled room Figure 8. Decision Table Figure 9. Approximation Regions
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?tempSensor tempFilter
]DK'IA/
detect x °C o 5

¢ X ox) ) C 7(x) /“(T(x))
Environ'< O O >0
p stimulus ¢ P tempReading ‘?tempSensor P out

respond tfi fter
Figure 10. Temperature Sensor Model Figure 11. Filter Model

A Petri net model of the sensor-filter combination used to construct the decision table in Fig. 8 can
now be given. First, a receptor process model for a receptor place denoted ?tempSensor representing a
temperature sensor is given in Fig. 10. The temperature sensor is then connected to a model of the filter
in form of a Lukasiewicz guard (see Fig. 11). To complete the model of the system used to produce
approximation regions specified by T X, where the enabling of a transition rough leads to a computation
p that constructs an upper approximation (see Fig. 12). The model in Fig. 12 can be taken a step further
to create a model of a rough neuron [25]. Let TX, [u]. denote an input place which supplies an upper
approximation, and input place which supplies a indiscernibility class, respectively. Further, assume that
TX, [u]. supply input to a transition that computes a rough membership function value as in Fig. 3(a).
Such a Petri net provides a simple model of what is known as a rough neuron, which can be used in
classifying room temperature readings.

approximationSystem

P, )
I S t SR IP SR iy 3 et 1) Y
°C - L(A.)./, {i(;‘l)} [t(f\). /,I[__:(f\) ]] g ,(.7( [;(3\). /.{__r.(?\) }]})
x) v S t )
=0
2temp Sensor Pout Papprox

tfilter

P other

Figure 12. Approximation System Model

6. Sensor Fusion

Consider, next, the case where there is interest in discovering which sensor is more relevant among a
set of sensors. The computation required to identify relevant sensors provides a form of sensor fusion.
The term sensor fusion generally refers to some process of combining sensor readings [28]. The term
relevance in this context denotes the “closeness” of a set of experimental sensor values relative to a
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set of a pre-calibrated, target sensor values that are considered important in a classification effort. The
identification of relevant sensors provides a form of sensor fusion. Further, assume that each of the
sensors have the same model with essentially the same accuracy. At this stage, we will ignore the issue
of the accuracy of a sensor, and trust that each sensor in the set of sensors produces output with low error.

6.1. Relevant Sensors

Consider the information system (U, A). Letu € U, B C A. Further, let B = {a1,...,an} be a set of
homogenous sensors. Next, determine [u]e, which is crucial in assessing the relevance of the sensors in
B. The set [u]. denotes a partition defined by an expert decision e. This partition is needed to classify
sensors using a rough integral [20]. Let [r, s] be a real-valued sensor signal value range used to gauge the
relevance of a sensor. Then, for example, the selection R of the most relevant sensors in a set of sensors

is found using
R= {ai € B| /aid,uf’1 € [s,r]}

In effect, the integral [ a; u$ serves as a filter inasmuch as it “filters” out all sensors with integral
values outside the prescribed interval.

6.2. Petri Net Model of Sensor Fusion

Consider the following scheme that utilizes a rough integral to select relevant sensor signals. We start
with a receptor process ?p that models a sensor a and assume that this sensor provides input X to a
guarded transition ¢. Let p be a rough measure; F(X) = [, a dp, a rough integral. The condition o
in the guard (o, A, Py,) is defined by a(z) holds iff z € [s,r], where AM(X) = F(X)/maz(F(X)) and
[s, 7] is a pre-selected, real-valued target sensor signal value range. This scheme can be used to design a
simple sensor fusion model with two sensors represented by receptors ?pl and ?p4 (see Fig. 13).

xllm xll(:) 1
A N xllm xnw dl
Y1 conv¥l)  P3 X1
opl Yoy, ¥ea, e |
t1 Pi(X1.X2) Pl 1) OPT( 1)
H6
Y2 conv(12) b X2 1)7 1)8

7p4 °

2 B = fuse
p>

Figure 13. Simple Sensor Fusion Model

Transition t1 is enabled and results in the conversion (”conditioning” with method conv(Y1)) of
signal Y1 to an appropriate form (e.g., analog to digital), if condition ;1 on A1 (Y1) is satisfied. Similarly,
transition t2 is enabled, if condition a2 on A; (Y1) is satisfied. The function conv maps Y1 {Y2} (a
sensor signal) to X1 {X2} (a more usable form of the signal). For example, the result of a "conversion”
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operation on signal Y1 might be the amplification X1. This is common practice in transducers where
weak signals are replaced by amplified signals to facilitate signal analysis. In the case where transitions
t1 and t2 are both enabled, sensor fusion occurs. In the case where the transition labeled "fuse” fires, the
method p; (X1, X2) derives a decision table represented by [ ] in Fig. 13. Whenever transition t3 is
enabled and fires, the method p{ (X1, X2) implements classical rough set methods to produce a set of
rules OPT([ ]s)-

In this simplified model of rule-production in guiding decision-making in a problem-solving system,
the construction of the decision table by p; depends on the fusion of values from sensors represented by
?pl and ?p4. Each row of this table provides an instance of an information granule useful in reasoning
about perceived phenomena. he transition labeled "fuse” becomes enabled only in the case where sensor
signals Y1 and Y2 satisfy the guards on transitions t1 and t2, respectively. Once the two input signals
cross the thresholds for the guards on t1 and t2, then a decision table can be built. Over time, the decision
table constructed by p; (X1, X2) will change as the input signals change. Recall that receptor places such
as ?pl and ?p4 continuously respond to new stimuli. Signal changes ripple through this system as long
as each new signal meets the required conditions specified by the guards.

7. Conclusion

Petri nets defined in the context of rough sets have provided a means of modeling sensors, filters, and
fusion of sensors. The filter models described in this paper take their inspiration from classical electric
filters, where low pass, pass band, and high pass filters are common. tukasiewicz guards make it possible
to model filters useful in isolating parts of a sensor signal deemed important in a problem-solving effort
(e.g., classification of the movements of an agent relative to a selected spatial region). Rough measures
and integrals make it possible to define particular classes of tukasiewicz guards useful in sensor fusion.
An illustration of this idea has been given in terms of a simple fusion network model that ”organizes”
itself over time by selectively firing transitions activated by particular sensor signals.
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